Control of Admission and Routing in Loss Networks: Hybrid Dynamic Programming Equations

Call admission and routing control decisions in stochastic loss (circuit-switched) networks with semi Markovian, multi-class, call arrival and general connection time processes are formulated as optimal stochastic control problems. The resulting so-called Hybrid Dynamic Programming equation systems...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2010-02, Vol.55 (2), p.350-366
Hauptverfasser: Zhongjing Ma, Caines, P.E., Malhame, R.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 366
container_issue 2
container_start_page 350
container_title IEEE transactions on automatic control
container_volume 55
creator Zhongjing Ma
Caines, P.E.
Malhame, R.P.
description Call admission and routing control decisions in stochastic loss (circuit-switched) networks with semi Markovian, multi-class, call arrival and general connection time processes are formulated as optimal stochastic control problems. The resulting so-called Hybrid Dynamic Programming equation systems take the form of vectors of partial differential equations with each component associated to a distinct distribution of routed calls over the network (i.e. distinct occupation states). This framework reduces to that of a Markov Decision Process when the traffic is Poisson and the associated computational limitations are approximately those of linear programs. Examples are provided of (i) network state space constructions and controlled state transition processes, (ii) a new closed form solution for a simple network, and (iii) the analysis and illustrative numerical results for a three link network.
doi_str_mv 10.1109/TAC.2009.2034934
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_743651309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5361376</ieee_id><sourcerecordid>743651309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-61e313214bfbfbd0e360947632affc56f29f9a6135a29845084ec7e204f72fa3</originalsourceid><addsrcrecordid>eNqFkUtLAzEUhYMoWB97wU0QxNVo3pO4K7U-oKhIwWVIp4lEZxJNZpD-e1NaXLiRwA2X-90D9xwATjC6xBipq_l4ckkQUqVQpijbASPMuawIJ3QXjBDCslJEin1wkPN7aQVjeAReJzH0KbYwOjhedj5nHwM0YQlf4tD78AZ9gLOYM3y0_XdMH_ka3q8WyS_hzSqYzjfwOcW3ZLpuDU-_BtMXhXwE9pxpsz3e_odgfjudT-6r2dPdw2Q8qxoqWV8JbCmmBLOFK2-JLBVIsVpQYpxruHBEOWUEptwQJRlHktmmtgQxVxNn6CG42Mh-pvg12NzrckJj29YEG4esZc0RIRyrf8maUcExRWvy7A_5HocUyhVaciEQLTYXCG2gJhVzknX6M_nOpJXGSK8D0SUQvQ5EbwMpK-dbXZMb07pkQuPz7x4hjGCCZOFON5y31v6OOS0uFGN-AMepkhA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>856603200</pqid></control><display><type>article</type><title>Control of Admission and Routing in Loss Networks: Hybrid Dynamic Programming Equations</title><source>IEEE Electronic Library (IEL)</source><creator>Zhongjing Ma ; Caines, P.E. ; Malhame, R.P.</creator><creatorcontrib>Zhongjing Ma ; Caines, P.E. ; Malhame, R.P.</creatorcontrib><description>Call admission and routing control decisions in stochastic loss (circuit-switched) networks with semi Markovian, multi-class, call arrival and general connection time processes are formulated as optimal stochastic control problems. The resulting so-called Hybrid Dynamic Programming equation systems take the form of vectors of partial differential equations with each component associated to a distinct distribution of routed calls over the network (i.e. distinct occupation states). This framework reduces to that of a Markov Decision Process when the traffic is Poisson and the associated computational limitations are approximately those of linear programs. Examples are provided of (i) network state space constructions and controlled state transition processes, (ii) a new closed form solution for a simple network, and (iii) the analysis and illustrative numerical results for a three link network.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2009.2034934</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Call admission and routing control ; Circuits ; Communication system traffic control ; Computer networks ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Control theory. Systems ; Decisions ; Differential equations ; Dynamic programming ; Exact sciences and technology ; Exact solutions ; Game theory ; hybrid dynamic programming (HDP) equations ; loss networks ; Mathematical analysis ; Networks ; Operational research and scientific management ; Operational research. Management science ; Optimal control ; Partial differential equations ; Poisson equations ; Routing ; Routing (telecommunications) ; Software ; Stochastic processes ; Stochasticity ; Vectors</subject><ispartof>IEEE transactions on automatic control, 2010-02, Vol.55 (2), p.350-366</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-61e313214bfbfbd0e360947632affc56f29f9a6135a29845084ec7e204f72fa3</citedby><cites>FETCH-LOGICAL-c384t-61e313214bfbfbd0e360947632affc56f29f9a6135a29845084ec7e204f72fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5361376$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5361376$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22421208$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhongjing Ma</creatorcontrib><creatorcontrib>Caines, P.E.</creatorcontrib><creatorcontrib>Malhame, R.P.</creatorcontrib><title>Control of Admission and Routing in Loss Networks: Hybrid Dynamic Programming Equations</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>Call admission and routing control decisions in stochastic loss (circuit-switched) networks with semi Markovian, multi-class, call arrival and general connection time processes are formulated as optimal stochastic control problems. The resulting so-called Hybrid Dynamic Programming equation systems take the form of vectors of partial differential equations with each component associated to a distinct distribution of routed calls over the network (i.e. distinct occupation states). This framework reduces to that of a Markov Decision Process when the traffic is Poisson and the associated computational limitations are approximately those of linear programs. Examples are provided of (i) network state space constructions and controlled state transition processes, (ii) a new closed form solution for a simple network, and (iii) the analysis and illustrative numerical results for a three link network.</description><subject>Applied sciences</subject><subject>Call admission and routing control</subject><subject>Circuits</subject><subject>Communication system traffic control</subject><subject>Computer networks</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Control theory. Systems</subject><subject>Decisions</subject><subject>Differential equations</subject><subject>Dynamic programming</subject><subject>Exact sciences and technology</subject><subject>Exact solutions</subject><subject>Game theory</subject><subject>hybrid dynamic programming (HDP) equations</subject><subject>loss networks</subject><subject>Mathematical analysis</subject><subject>Networks</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Optimal control</subject><subject>Partial differential equations</subject><subject>Poisson equations</subject><subject>Routing</subject><subject>Routing (telecommunications)</subject><subject>Software</subject><subject>Stochastic processes</subject><subject>Stochasticity</subject><subject>Vectors</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkUtLAzEUhYMoWB97wU0QxNVo3pO4K7U-oKhIwWVIp4lEZxJNZpD-e1NaXLiRwA2X-90D9xwATjC6xBipq_l4ckkQUqVQpijbASPMuawIJ3QXjBDCslJEin1wkPN7aQVjeAReJzH0KbYwOjhedj5nHwM0YQlf4tD78AZ9gLOYM3y0_XdMH_ka3q8WyS_hzSqYzjfwOcW3ZLpuDU-_BtMXhXwE9pxpsz3e_odgfjudT-6r2dPdw2Q8qxoqWV8JbCmmBLOFK2-JLBVIsVpQYpxruHBEOWUEptwQJRlHktmmtgQxVxNn6CG42Mh-pvg12NzrckJj29YEG4esZc0RIRyrf8maUcExRWvy7A_5HocUyhVaciEQLTYXCG2gJhVzknX6M_nOpJXGSK8D0SUQvQ5EbwMpK-dbXZMb07pkQuPz7x4hjGCCZOFON5y31v6OOS0uFGN-AMepkhA</recordid><startdate>20100201</startdate><enddate>20100201</enddate><creator>Zhongjing Ma</creator><creator>Caines, P.E.</creator><creator>Malhame, R.P.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20100201</creationdate><title>Control of Admission and Routing in Loss Networks: Hybrid Dynamic Programming Equations</title><author>Zhongjing Ma ; Caines, P.E. ; Malhame, R.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-61e313214bfbfbd0e360947632affc56f29f9a6135a29845084ec7e204f72fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Call admission and routing control</topic><topic>Circuits</topic><topic>Communication system traffic control</topic><topic>Computer networks</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Control theory. Systems</topic><topic>Decisions</topic><topic>Differential equations</topic><topic>Dynamic programming</topic><topic>Exact sciences and technology</topic><topic>Exact solutions</topic><topic>Game theory</topic><topic>hybrid dynamic programming (HDP) equations</topic><topic>loss networks</topic><topic>Mathematical analysis</topic><topic>Networks</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Optimal control</topic><topic>Partial differential equations</topic><topic>Poisson equations</topic><topic>Routing</topic><topic>Routing (telecommunications)</topic><topic>Software</topic><topic>Stochastic processes</topic><topic>Stochasticity</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhongjing Ma</creatorcontrib><creatorcontrib>Caines, P.E.</creatorcontrib><creatorcontrib>Malhame, R.P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhongjing Ma</au><au>Caines, P.E.</au><au>Malhame, R.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control of Admission and Routing in Loss Networks: Hybrid Dynamic Programming Equations</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2010-02-01</date><risdate>2010</risdate><volume>55</volume><issue>2</issue><spage>350</spage><epage>366</epage><pages>350-366</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>Call admission and routing control decisions in stochastic loss (circuit-switched) networks with semi Markovian, multi-class, call arrival and general connection time processes are formulated as optimal stochastic control problems. The resulting so-called Hybrid Dynamic Programming equation systems take the form of vectors of partial differential equations with each component associated to a distinct distribution of routed calls over the network (i.e. distinct occupation states). This framework reduces to that of a Markov Decision Process when the traffic is Poisson and the associated computational limitations are approximately those of linear programs. Examples are provided of (i) network state space constructions and controlled state transition processes, (ii) a new closed form solution for a simple network, and (iii) the analysis and illustrative numerical results for a three link network.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAC.2009.2034934</doi><tpages>17</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2010-02, Vol.55 (2), p.350-366
issn 0018-9286
1558-2523
language eng
recordid cdi_proquest_miscellaneous_743651309
source IEEE Electronic Library (IEL)
subjects Applied sciences
Call admission and routing control
Circuits
Communication system traffic control
Computer networks
Computer science
control theory
systems
Computer systems and distributed systems. User interface
Control theory. Systems
Decisions
Differential equations
Dynamic programming
Exact sciences and technology
Exact solutions
Game theory
hybrid dynamic programming (HDP) equations
loss networks
Mathematical analysis
Networks
Operational research and scientific management
Operational research. Management science
Optimal control
Partial differential equations
Poisson equations
Routing
Routing (telecommunications)
Software
Stochastic processes
Stochasticity
Vectors
title Control of Admission and Routing in Loss Networks: Hybrid Dynamic Programming Equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T21%3A12%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20of%20Admission%20and%20Routing%20in%20Loss%20Networks:%20Hybrid%20Dynamic%20Programming%20Equations&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Zhongjing%20Ma&rft.date=2010-02-01&rft.volume=55&rft.issue=2&rft.spage=350&rft.epage=366&rft.pages=350-366&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2009.2034934&rft_dat=%3Cproquest_RIE%3E743651309%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=856603200&rft_id=info:pmid/&rft_ieee_id=5361376&rfr_iscdi=true