Calculating rotational motion in discrete element modelling of arbitrary shaped model objects

Application of the discrete element method (DEM) to real scale engineering problems involving three-dimensional modelling of large, non-spherical particles must consider the inertia tensor and temporal change in the orientation of the particles when calculating the rotational motion. This factor has...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering computations 2000-09, Vol.17 (6), p.703-714
Hauptverfasser: Kremmer, M., Favier, J.F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 714
container_issue 6
container_start_page 703
container_title Engineering computations
container_volume 17
creator Kremmer, M.
Favier, J.F.
description Application of the discrete element method (DEM) to real scale engineering problems involving three-dimensional modelling of large, non-spherical particles must consider the inertia tensor and temporal change in the orientation of the particles when calculating the rotational motion. This factor has commonly been neglected in discrete element modelling although it will significantly influence the dynamic behaviour of non-spherical particles. In this paper two methods, vector transformation and tensor transformation, for calculation of the rotational motion of particles in response to applied moments are presented. The methods consider the inertia tensor and the local object frame of arbitrary shaped particles and suggest solutions for the non-linear Euler equations for calculation of their rotational motion. They are discussed with respect to implementation into a discrete element code and assessed in terms of their accuracy and computational efficiency.
doi_str_mv 10.1108/02644400010340633
format Article
fullrecord <record><control><sourceid>proquest_emera</sourceid><recordid>TN_cdi_proquest_miscellaneous_743648250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>84988678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-f52ac81da2614d4ddd671b1b6b01fd013d8b9e2ab09d5a3596e3b66e819d2c263</originalsourceid><addsrcrecordid>eNqNkU9LxDAQxYMouK5-AG_Fg16sZpI0aY9a_MuCBxVPEtIm1a7dZk2yoN_elIoHFfE0A-_3ZoY3CO0CPgLA-TEmnDGGMQZMGeaUrqEJiCxPBRZiHU0GPY0AbKIt7-cRFJTiCXosVVevOhXa_ilxNsTG9qpLFnZokrZPdOtrZ4JJTGcWpg9R0qbrBt42iXJVG5xy74l_VkujRzWx1dzUwW-jjUZ13ux81im6Pz-7Ky_T2c3FVXkyS2vGipA2GVF1DloRDkwzrTUXUEHFKwyNxkB1XhWGqAoXOlM0K7ihFecmh0KTmnA6RQfj3KWzryvjg1zEq-OVqjd25aVglLOcZDiS-3-SJCfABRUR3PsGzu3KxWgiAyyjMe08QjBCtbPeO9PIpWsXMQ0JWA5_kT_-Ej3p6Gl9MG9fBuVe5LA4k-yBSH5b8llxei1Z5PHIx_Sd6vS_Vhz-bvmByqVu6AfjmapB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214534448</pqid></control><display><type>article</type><title>Calculating rotational motion in discrete element modelling of arbitrary shaped model objects</title><source>Emerald</source><creator>Kremmer, M. ; Favier, J.F.</creator><creatorcontrib>Kremmer, M. ; Favier, J.F.</creatorcontrib><description>Application of the discrete element method (DEM) to real scale engineering problems involving three-dimensional modelling of large, non-spherical particles must consider the inertia tensor and temporal change in the orientation of the particles when calculating the rotational motion. This factor has commonly been neglected in discrete element modelling although it will significantly influence the dynamic behaviour of non-spherical particles. In this paper two methods, vector transformation and tensor transformation, for calculation of the rotational motion of particles in response to applied moments are presented. The methods consider the inertia tensor and the local object frame of arbitrary shaped particles and suggest solutions for the non-linear Euler equations for calculation of their rotational motion. They are discussed with respect to implementation into a discrete element code and assessed in terms of their accuracy and computational efficiency.</description><identifier>ISSN: 0264-4401</identifier><identifier>EISSN: 1758-7077</identifier><identifier>DOI: 10.1108/02644400010340633</identifier><language>eng</language><publisher>Bradford: MCB UP Ltd</publisher><subject>Discrete element method ; Dynamic programming ; Engineering ; Environmental science ; Inertia ; Kinematics ; Mathematical models ; Modelling ; Motion ; Particles ; Spheres ; Studies ; Systems engineering</subject><ispartof>Engineering computations, 2000-09, Vol.17 (6), p.703-714</ispartof><rights>MCB UP Limited</rights><rights>Copyright MCB UP Limited (MCB) 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-f52ac81da2614d4ddd671b1b6b01fd013d8b9e2ab09d5a3596e3b66e819d2c263</citedby><cites>FETCH-LOGICAL-c449t-f52ac81da2614d4ddd671b1b6b01fd013d8b9e2ab09d5a3596e3b66e819d2c263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/02644400010340633/full/pdf$$EPDF$$P50$$Gemerald$$H</linktopdf><linktohtml>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/02644400010340633/full/html$$EHTML$$P50$$Gemerald$$H</linktohtml><link.rule.ids>314,776,780,961,11614,27901,27902,52661,52664</link.rule.ids></links><search><creatorcontrib>Kremmer, M.</creatorcontrib><creatorcontrib>Favier, J.F.</creatorcontrib><title>Calculating rotational motion in discrete element modelling of arbitrary shaped model objects</title><title>Engineering computations</title><description>Application of the discrete element method (DEM) to real scale engineering problems involving three-dimensional modelling of large, non-spherical particles must consider the inertia tensor and temporal change in the orientation of the particles when calculating the rotational motion. This factor has commonly been neglected in discrete element modelling although it will significantly influence the dynamic behaviour of non-spherical particles. In this paper two methods, vector transformation and tensor transformation, for calculation of the rotational motion of particles in response to applied moments are presented. The methods consider the inertia tensor and the local object frame of arbitrary shaped particles and suggest solutions for the non-linear Euler equations for calculation of their rotational motion. They are discussed with respect to implementation into a discrete element code and assessed in terms of their accuracy and computational efficiency.</description><subject>Discrete element method</subject><subject>Dynamic programming</subject><subject>Engineering</subject><subject>Environmental science</subject><subject>Inertia</subject><subject>Kinematics</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Motion</subject><subject>Particles</subject><subject>Spheres</subject><subject>Studies</subject><subject>Systems engineering</subject><issn>0264-4401</issn><issn>1758-7077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNkU9LxDAQxYMouK5-AG_Fg16sZpI0aY9a_MuCBxVPEtIm1a7dZk2yoN_elIoHFfE0A-_3ZoY3CO0CPgLA-TEmnDGGMQZMGeaUrqEJiCxPBRZiHU0GPY0AbKIt7-cRFJTiCXosVVevOhXa_ilxNsTG9qpLFnZokrZPdOtrZ4JJTGcWpg9R0qbrBt42iXJVG5xy74l_VkujRzWx1dzUwW-jjUZ13ux81im6Pz-7Ky_T2c3FVXkyS2vGipA2GVF1DloRDkwzrTUXUEHFKwyNxkB1XhWGqAoXOlM0K7ihFecmh0KTmnA6RQfj3KWzryvjg1zEq-OVqjd25aVglLOcZDiS-3-SJCfABRUR3PsGzu3KxWgiAyyjMe08QjBCtbPeO9PIpWsXMQ0JWA5_kT_-Ej3p6Gl9MG9fBuVe5LA4k-yBSH5b8llxei1Z5PHIx_Sd6vS_Vhz-bvmByqVu6AfjmapB</recordid><startdate>20000901</startdate><enddate>20000901</enddate><creator>Kremmer, M.</creator><creator>Favier, J.F.</creator><general>MCB UP Ltd</general><general>Emerald Group Publishing Limited</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20000901</creationdate><title>Calculating rotational motion in discrete element modelling of arbitrary shaped model objects</title><author>Kremmer, M. ; Favier, J.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-f52ac81da2614d4ddd671b1b6b01fd013d8b9e2ab09d5a3596e3b66e819d2c263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Discrete element method</topic><topic>Dynamic programming</topic><topic>Engineering</topic><topic>Environmental science</topic><topic>Inertia</topic><topic>Kinematics</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Motion</topic><topic>Particles</topic><topic>Spheres</topic><topic>Studies</topic><topic>Systems engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kremmer, M.</creatorcontrib><creatorcontrib>Favier, J.F.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM global</collection><collection>Computing Database</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Engineering computations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kremmer, M.</au><au>Favier, J.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calculating rotational motion in discrete element modelling of arbitrary shaped model objects</atitle><jtitle>Engineering computations</jtitle><date>2000-09-01</date><risdate>2000</risdate><volume>17</volume><issue>6</issue><spage>703</spage><epage>714</epage><pages>703-714</pages><issn>0264-4401</issn><eissn>1758-7077</eissn><abstract>Application of the discrete element method (DEM) to real scale engineering problems involving three-dimensional modelling of large, non-spherical particles must consider the inertia tensor and temporal change in the orientation of the particles when calculating the rotational motion. This factor has commonly been neglected in discrete element modelling although it will significantly influence the dynamic behaviour of non-spherical particles. In this paper two methods, vector transformation and tensor transformation, for calculation of the rotational motion of particles in response to applied moments are presented. The methods consider the inertia tensor and the local object frame of arbitrary shaped particles and suggest solutions for the non-linear Euler equations for calculation of their rotational motion. They are discussed with respect to implementation into a discrete element code and assessed in terms of their accuracy and computational efficiency.</abstract><cop>Bradford</cop><pub>MCB UP Ltd</pub><doi>10.1108/02644400010340633</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0264-4401
ispartof Engineering computations, 2000-09, Vol.17 (6), p.703-714
issn 0264-4401
1758-7077
language eng
recordid cdi_proquest_miscellaneous_743648250
source Emerald
subjects Discrete element method
Dynamic programming
Engineering
Environmental science
Inertia
Kinematics
Mathematical models
Modelling
Motion
Particles
Spheres
Studies
Systems engineering
title Calculating rotational motion in discrete element modelling of arbitrary shaped model objects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A46%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_emera&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calculating%20rotational%20motion%20in%20discrete%20element%20modelling%20of%20arbitrary%20shaped%20model%20objects&rft.jtitle=Engineering%20computations&rft.au=Kremmer,%20M.&rft.date=2000-09-01&rft.volume=17&rft.issue=6&rft.spage=703&rft.epage=714&rft.pages=703-714&rft.issn=0264-4401&rft.eissn=1758-7077&rft_id=info:doi/10.1108/02644400010340633&rft_dat=%3Cproquest_emera%3E84988678%3C/proquest_emera%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=214534448&rft_id=info:pmid/&rfr_iscdi=true