Water Supply Reservoir Operation by Combined Genetic Algorithm - Linear Programming (GA-LP) Approach

Multi-reservoir operation planning is a complex task involving many variables, objectives, and decisions. This paper applies a hybrid method using genetic algorithm (GA) and linear programming (LP) developed by the authors to determine operational decisions for a reservoir system over the optimizati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources management 2006-04, Vol.20 (2), p.227-255
Hauptverfasser: Reis, L.F.R, Bessler, F.T, Walters, G.A, Savic, D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 255
container_issue 2
container_start_page 227
container_title Water resources management
container_volume 20
creator Reis, L.F.R
Bessler, F.T
Walters, G.A
Savic, D
description Multi-reservoir operation planning is a complex task involving many variables, objectives, and decisions. This paper applies a hybrid method using genetic algorithm (GA) and linear programming (LP) developed by the authors to determine operational decisions for a reservoir system over the optimization period. This method identifies part of the decision variables called cost reduction factors (CRFs) by GA and operational variables by LP. CRFs are introduced into the formulation to discourage reservoir depletion in the initial stages of the planning period. These factors are useful parameters that can be employed to determine operational decisions such as optimal releases and imports, in response to future inflow predictions. A part of the Roadford Water Supply System, UK, is used to demonstrate the performance of the GA-LP method in comparison to the RELAX algorithm. The proposed approach obtains comparable results ensuring non zero final storages in the larger reservoirs of the Roadford Hydrosystem. It shows potential for generating operating policy in the form of hegging rules without a priori imposition of their form.
doi_str_mv 10.1007/s11269-006-8049-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743636567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19280450</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-d9d12f0a0b7d9ed03f8e6a1eae39db30606d85e754357dddc1bef88466534f063</originalsourceid><addsrcrecordid>eNp9kU2LFDEQhoMoOK7-AE8Gwa9DtNL56hyHQUdhYBfXxWNId6pne-nutEmPMPvrzTALggdPOdTzVqXqIeQlh48cwHzKnFfaMgDNapCW3T8iK66MYFwreExWYCtg0kj-lDzL-Q6gpCysSPjpF0z0-jDPw5F-x4zpd-wTvZwx-aWPE22OdBPHpp8w0C1OuPQtXQ_7mPrldqSM7krFJ3qV4j75ceynPX2_XbPd1Qe6nucUfXv7nDzp_JDxxcN7QW6-fP6x-cp2l9tvm_WOtVKphQUbeNWBh8YEiwFEV6P2HD0KGxoBGnSoFRolhTIhhJY32NW11FoJ2YEWF-TduW8Z--uAeXFjn1scBj9hPGRnpNBCK20K-fa_JLdVOaOCAr7-B7yLhzSVLZxRFWgtjC0QP0Ntijkn7Nyc-tGno-PgTnrcWY8retxJj7svmTcPjX1u_dAlP7V9_hs0Bspip5--OnOdj87vU2Furivgohi0qpaV-AOmI5fh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>752066379</pqid></control><display><type>article</type><title>Water Supply Reservoir Operation by Combined Genetic Algorithm - Linear Programming (GA-LP) Approach</title><source>SpringerLink Journals - AutoHoldings</source><creator>Reis, L.F.R ; Bessler, F.T ; Walters, G.A ; Savic, D</creator><creatorcontrib>Reis, L.F.R ; Bessler, F.T ; Walters, G.A ; Savic, D</creatorcontrib><description>Multi-reservoir operation planning is a complex task involving many variables, objectives, and decisions. This paper applies a hybrid method using genetic algorithm (GA) and linear programming (LP) developed by the authors to determine operational decisions for a reservoir system over the optimization period. This method identifies part of the decision variables called cost reduction factors (CRFs) by GA and operational variables by LP. CRFs are introduced into the formulation to discourage reservoir depletion in the initial stages of the planning period. These factors are useful parameters that can be employed to determine operational decisions such as optimal releases and imports, in response to future inflow predictions. A part of the Roadford Water Supply System, UK, is used to demonstrate the performance of the GA-LP method in comparison to the RELAX algorithm. The proposed approach obtains comparable results ensuring non zero final storages in the larger reservoirs of the Roadford Hydrosystem. It shows potential for generating operating policy in the form of hegging rules without a priori imposition of their form.</description><identifier>ISSN: 0920-4741</identifier><identifier>EISSN: 1573-1650</identifier><identifier>DOI: 10.1007/s11269-006-8049-z</identifier><identifier>CODEN: WRMAEJ</identifier><language>eng</language><publisher>Dordrecht: Springer</publisher><subject>Algorithms ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Genetic algorithms ; Hydrology. Hydrogeology ; Imports ; Linear programming ; Operations research ; Reservoir operation ; Studies ; Water conveyance ; Water resources ; Water supply</subject><ispartof>Water resources management, 2006-04, Vol.20 (2), p.227-255</ispartof><rights>2006 INIST-CNRS</rights><rights>Springer Science + Business Media, Inc. 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-d9d12f0a0b7d9ed03f8e6a1eae39db30606d85e754357dddc1bef88466534f063</citedby><cites>FETCH-LOGICAL-c455t-d9d12f0a0b7d9ed03f8e6a1eae39db30606d85e754357dddc1bef88466534f063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17704667$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Reis, L.F.R</creatorcontrib><creatorcontrib>Bessler, F.T</creatorcontrib><creatorcontrib>Walters, G.A</creatorcontrib><creatorcontrib>Savic, D</creatorcontrib><title>Water Supply Reservoir Operation by Combined Genetic Algorithm - Linear Programming (GA-LP) Approach</title><title>Water resources management</title><description>Multi-reservoir operation planning is a complex task involving many variables, objectives, and decisions. This paper applies a hybrid method using genetic algorithm (GA) and linear programming (LP) developed by the authors to determine operational decisions for a reservoir system over the optimization period. This method identifies part of the decision variables called cost reduction factors (CRFs) by GA and operational variables by LP. CRFs are introduced into the formulation to discourage reservoir depletion in the initial stages of the planning period. These factors are useful parameters that can be employed to determine operational decisions such as optimal releases and imports, in response to future inflow predictions. A part of the Roadford Water Supply System, UK, is used to demonstrate the performance of the GA-LP method in comparison to the RELAX algorithm. The proposed approach obtains comparable results ensuring non zero final storages in the larger reservoirs of the Roadford Hydrosystem. It shows potential for generating operating policy in the form of hegging rules without a priori imposition of their form.</description><subject>Algorithms</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Genetic algorithms</subject><subject>Hydrology. Hydrogeology</subject><subject>Imports</subject><subject>Linear programming</subject><subject>Operations research</subject><subject>Reservoir operation</subject><subject>Studies</subject><subject>Water conveyance</subject><subject>Water resources</subject><subject>Water supply</subject><issn>0920-4741</issn><issn>1573-1650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kU2LFDEQhoMoOK7-AE8Gwa9DtNL56hyHQUdhYBfXxWNId6pne-nutEmPMPvrzTALggdPOdTzVqXqIeQlh48cwHzKnFfaMgDNapCW3T8iK66MYFwreExWYCtg0kj-lDzL-Q6gpCysSPjpF0z0-jDPw5F-x4zpd-wTvZwx-aWPE22OdBPHpp8w0C1OuPQtXQ_7mPrldqSM7krFJ3qV4j75ceynPX2_XbPd1Qe6nucUfXv7nDzp_JDxxcN7QW6-fP6x-cp2l9tvm_WOtVKphQUbeNWBh8YEiwFEV6P2HD0KGxoBGnSoFRolhTIhhJY32NW11FoJ2YEWF-TduW8Z--uAeXFjn1scBj9hPGRnpNBCK20K-fa_JLdVOaOCAr7-B7yLhzSVLZxRFWgtjC0QP0Ntijkn7Nyc-tGno-PgTnrcWY8retxJj7svmTcPjX1u_dAlP7V9_hs0Bspip5--OnOdj87vU2Furivgohi0qpaV-AOmI5fh</recordid><startdate>20060401</startdate><enddate>20060401</enddate><creator>Reis, L.F.R</creator><creator>Bessler, F.T</creator><creator>Walters, G.A</creator><creator>Savic, D</creator><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KR7</scope><scope>L.-</scope><scope>L.0</scope><scope>L.G</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>H96</scope></search><sort><creationdate>20060401</creationdate><title>Water Supply Reservoir Operation by Combined Genetic Algorithm - Linear Programming (GA-LP) Approach</title><author>Reis, L.F.R ; Bessler, F.T ; Walters, G.A ; Savic, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-d9d12f0a0b7d9ed03f8e6a1eae39db30606d85e754357dddc1bef88466534f063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Genetic algorithms</topic><topic>Hydrology. Hydrogeology</topic><topic>Imports</topic><topic>Linear programming</topic><topic>Operations research</topic><topic>Reservoir operation</topic><topic>Studies</topic><topic>Water conveyance</topic><topic>Water resources</topic><topic>Water supply</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reis, L.F.R</creatorcontrib><creatorcontrib>Bessler, F.T</creatorcontrib><creatorcontrib>Walters, G.A</creatorcontrib><creatorcontrib>Savic, D</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><jtitle>Water resources management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reis, L.F.R</au><au>Bessler, F.T</au><au>Walters, G.A</au><au>Savic, D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water Supply Reservoir Operation by Combined Genetic Algorithm - Linear Programming (GA-LP) Approach</atitle><jtitle>Water resources management</jtitle><date>2006-04-01</date><risdate>2006</risdate><volume>20</volume><issue>2</issue><spage>227</spage><epage>255</epage><pages>227-255</pages><issn>0920-4741</issn><eissn>1573-1650</eissn><coden>WRMAEJ</coden><abstract>Multi-reservoir operation planning is a complex task involving many variables, objectives, and decisions. This paper applies a hybrid method using genetic algorithm (GA) and linear programming (LP) developed by the authors to determine operational decisions for a reservoir system over the optimization period. This method identifies part of the decision variables called cost reduction factors (CRFs) by GA and operational variables by LP. CRFs are introduced into the formulation to discourage reservoir depletion in the initial stages of the planning period. These factors are useful parameters that can be employed to determine operational decisions such as optimal releases and imports, in response to future inflow predictions. A part of the Roadford Water Supply System, UK, is used to demonstrate the performance of the GA-LP method in comparison to the RELAX algorithm. The proposed approach obtains comparable results ensuring non zero final storages in the larger reservoirs of the Roadford Hydrosystem. It shows potential for generating operating policy in the form of hegging rules without a priori imposition of their form.</abstract><cop>Dordrecht</cop><pub>Springer</pub><doi>10.1007/s11269-006-8049-z</doi><tpages>29</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0920-4741
ispartof Water resources management, 2006-04, Vol.20 (2), p.227-255
issn 0920-4741
1573-1650
language eng
recordid cdi_proquest_miscellaneous_743636567
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Earth sciences
Earth, ocean, space
Exact sciences and technology
Genetic algorithms
Hydrology. Hydrogeology
Imports
Linear programming
Operations research
Reservoir operation
Studies
Water conveyance
Water resources
Water supply
title Water Supply Reservoir Operation by Combined Genetic Algorithm - Linear Programming (GA-LP) Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A35%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water%20Supply%20Reservoir%20Operation%20by%20Combined%20Genetic%20Algorithm%20-%20Linear%20Programming%20(GA-LP)%20Approach&rft.jtitle=Water%20resources%20management&rft.au=Reis,%20L.F.R&rft.date=2006-04-01&rft.volume=20&rft.issue=2&rft.spage=227&rft.epage=255&rft.pages=227-255&rft.issn=0920-4741&rft.eissn=1573-1650&rft.coden=WRMAEJ&rft_id=info:doi/10.1007/s11269-006-8049-z&rft_dat=%3Cproquest_cross%3E19280450%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=752066379&rft_id=info:pmid/&rfr_iscdi=true