A spherical discrete element model: calibration procedure and incremental response

When using spherical elements within the Discrete Element Method, computational costs can be kept low even for large numbers of elements. However, this oversimplification of the granular geometry has drawbacks when quantitatively assessing the model even for frictional geomaterials. To overcome this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Granular matter 2009-10, Vol.11 (5), p.293-306
Hauptverfasser: Plassiard, Jean-Patrick, Belheine, Noura, Donzé, Frédéric-Victor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 306
container_issue 5
container_start_page 293
container_title Granular matter
container_volume 11
creator Plassiard, Jean-Patrick
Belheine, Noura
Donzé, Frédéric-Victor
description When using spherical elements within the Discrete Element Method, computational costs can be kept low even for large numbers of elements. However, this oversimplification of the granular geometry has drawbacks when quantitatively assessing the model even for frictional geomaterials. To overcome this limitation, the local constitutive law must at least take into account the transfer of a moment between elements. This moment, which is added to normal and shear local interaction forces, increases the number of local parameters. Moreover, when local plastic thresholds are considered, the calibration of the model becomes tricky. With such a set of local parameters, a calibration procedure is proposed, which attempts to define the respective role of each parameter in the macroscopic behavior. A series of numerical simulations of triaxial compression tests has been performed to check the capability of this model to get good quantitative results and the incremental behavior of the numerical medium is studied by performing a series of axisymmetric stress probes with varying directions. The corresponding strain responses are measured. From different initial stress states, the results indicate that the incremental response is well described by elastoplasticity with a single mechanism, and a non-associative flow rule.
doi_str_mv 10.1007/s10035-009-0130-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743635841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743635841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-e150f7c14eb0c3544e83f5b242781441419d3c0ec05de07e0221dbf6b9a6af183</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG_Fi6fqTD6a1tuy-AULgug5tOlUu_TLpIX135ulC4LgZTKQ5xleXsYuEW4QQN_6MIWKAbIYUEC8O2ILlELGOhHJ8WFXwPGUnXm_BUCVoV6w11Xkh09ytc2bqKy9dTRSRA211I1R25fU3EXhry5cPtZ9Fw2ut1ROjqK8K6O6C8IeDbYjP_Sdp3N2UuWNp4vDu2TvD_dv66d48_L4vF5tYiukHmNCBZW2KKkAK5SUlIpKFVxynaKUKDErhQWyoEoCTcA5lkWVFFme5BWmYsmu57sh0tdEfjRtyE9Nk3fUT95oKRKhUomBvPpDbvvJdSGc4TzUJrTiAcIZsq733lFlBle3ufs2CGbfsZk7NqFjs-_Y7ILDZ8cHtvsg93v4f-kHRIR_GA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>220353752</pqid></control><display><type>article</type><title>A spherical discrete element model: calibration procedure and incremental response</title><source>Springer Nature - Complete Springer Journals</source><creator>Plassiard, Jean-Patrick ; Belheine, Noura ; Donzé, Frédéric-Victor</creator><creatorcontrib>Plassiard, Jean-Patrick ; Belheine, Noura ; Donzé, Frédéric-Victor</creatorcontrib><description>When using spherical elements within the Discrete Element Method, computational costs can be kept low even for large numbers of elements. However, this oversimplification of the granular geometry has drawbacks when quantitatively assessing the model even for frictional geomaterials. To overcome this limitation, the local constitutive law must at least take into account the transfer of a moment between elements. This moment, which is added to normal and shear local interaction forces, increases the number of local parameters. Moreover, when local plastic thresholds are considered, the calibration of the model becomes tricky. With such a set of local parameters, a calibration procedure is proposed, which attempts to define the respective role of each parameter in the macroscopic behavior. A series of numerical simulations of triaxial compression tests has been performed to check the capability of this model to get good quantitative results and the incremental behavior of the numerical medium is studied by performing a series of axisymmetric stress probes with varying directions. The corresponding strain responses are measured. From different initial stress states, the results indicate that the incremental response is well described by elastoplasticity with a single mechanism, and a non-associative flow rule.</description><identifier>ISSN: 1434-5021</identifier><identifier>EISSN: 1434-7636</identifier><identifier>DOI: 10.1007/s10035-009-0130-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Calibration ; Complex Fluids and Microfluidics ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Foundations ; Geoengineering ; Geometry ; Heat and Mass Transfer ; Hydraulics ; Industrial Chemistry/Chemical Engineering ; Materials Science ; Mathematical models ; Physics ; Physics and Astronomy ; Rheology ; Simulation ; Soft and Granular Matter</subject><ispartof>Granular matter, 2009-10, Vol.11 (5), p.293-306</ispartof><rights>Springer-Verlag 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-e150f7c14eb0c3544e83f5b242781441419d3c0ec05de07e0221dbf6b9a6af183</citedby><cites>FETCH-LOGICAL-c347t-e150f7c14eb0c3544e83f5b242781441419d3c0ec05de07e0221dbf6b9a6af183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10035-009-0130-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10035-009-0130-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Plassiard, Jean-Patrick</creatorcontrib><creatorcontrib>Belheine, Noura</creatorcontrib><creatorcontrib>Donzé, Frédéric-Victor</creatorcontrib><title>A spherical discrete element model: calibration procedure and incremental response</title><title>Granular matter</title><addtitle>Granular Matter</addtitle><description>When using spherical elements within the Discrete Element Method, computational costs can be kept low even for large numbers of elements. However, this oversimplification of the granular geometry has drawbacks when quantitatively assessing the model even for frictional geomaterials. To overcome this limitation, the local constitutive law must at least take into account the transfer of a moment between elements. This moment, which is added to normal and shear local interaction forces, increases the number of local parameters. Moreover, when local plastic thresholds are considered, the calibration of the model becomes tricky. With such a set of local parameters, a calibration procedure is proposed, which attempts to define the respective role of each parameter in the macroscopic behavior. A series of numerical simulations of triaxial compression tests has been performed to check the capability of this model to get good quantitative results and the incremental behavior of the numerical medium is studied by performing a series of axisymmetric stress probes with varying directions. The corresponding strain responses are measured. From different initial stress states, the results indicate that the incremental response is well described by elastoplasticity with a single mechanism, and a non-associative flow rule.</description><subject>Calibration</subject><subject>Complex Fluids and Microfluidics</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Foundations</subject><subject>Geoengineering</subject><subject>Geometry</subject><subject>Heat and Mass Transfer</subject><subject>Hydraulics</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Rheology</subject><subject>Simulation</subject><subject>Soft and Granular Matter</subject><issn>1434-5021</issn><issn>1434-7636</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LxDAQhoMouK7-AG_Fi6fqTD6a1tuy-AULgug5tOlUu_TLpIX135ulC4LgZTKQ5xleXsYuEW4QQN_6MIWKAbIYUEC8O2ILlELGOhHJ8WFXwPGUnXm_BUCVoV6w11Xkh09ytc2bqKy9dTRSRA211I1R25fU3EXhry5cPtZ9Fw2ut1ROjqK8K6O6C8IeDbYjP_Sdp3N2UuWNp4vDu2TvD_dv66d48_L4vF5tYiukHmNCBZW2KKkAK5SUlIpKFVxynaKUKDErhQWyoEoCTcA5lkWVFFme5BWmYsmu57sh0tdEfjRtyE9Nk3fUT95oKRKhUomBvPpDbvvJdSGc4TzUJrTiAcIZsq733lFlBle3ufs2CGbfsZk7NqFjs-_Y7ILDZ8cHtvsg93v4f-kHRIR_GA</recordid><startdate>20091001</startdate><enddate>20091001</enddate><creator>Plassiard, Jean-Patrick</creator><creator>Belheine, Noura</creator><creator>Donzé, Frédéric-Victor</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20091001</creationdate><title>A spherical discrete element model: calibration procedure and incremental response</title><author>Plassiard, Jean-Patrick ; Belheine, Noura ; Donzé, Frédéric-Victor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-e150f7c14eb0c3544e83f5b242781441419d3c0ec05de07e0221dbf6b9a6af183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Calibration</topic><topic>Complex Fluids and Microfluidics</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Foundations</topic><topic>Geoengineering</topic><topic>Geometry</topic><topic>Heat and Mass Transfer</topic><topic>Hydraulics</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Rheology</topic><topic>Simulation</topic><topic>Soft and Granular Matter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Plassiard, Jean-Patrick</creatorcontrib><creatorcontrib>Belheine, Noura</creatorcontrib><creatorcontrib>Donzé, Frédéric-Victor</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Granular matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Plassiard, Jean-Patrick</au><au>Belheine, Noura</au><au>Donzé, Frédéric-Victor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A spherical discrete element model: calibration procedure and incremental response</atitle><jtitle>Granular matter</jtitle><stitle>Granular Matter</stitle><date>2009-10-01</date><risdate>2009</risdate><volume>11</volume><issue>5</issue><spage>293</spage><epage>306</epage><pages>293-306</pages><issn>1434-5021</issn><eissn>1434-7636</eissn><abstract>When using spherical elements within the Discrete Element Method, computational costs can be kept low even for large numbers of elements. However, this oversimplification of the granular geometry has drawbacks when quantitatively assessing the model even for frictional geomaterials. To overcome this limitation, the local constitutive law must at least take into account the transfer of a moment between elements. This moment, which is added to normal and shear local interaction forces, increases the number of local parameters. Moreover, when local plastic thresholds are considered, the calibration of the model becomes tricky. With such a set of local parameters, a calibration procedure is proposed, which attempts to define the respective role of each parameter in the macroscopic behavior. A series of numerical simulations of triaxial compression tests has been performed to check the capability of this model to get good quantitative results and the incremental behavior of the numerical medium is studied by performing a series of axisymmetric stress probes with varying directions. The corresponding strain responses are measured. From different initial stress states, the results indicate that the incremental response is well described by elastoplasticity with a single mechanism, and a non-associative flow rule.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s10035-009-0130-x</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1434-5021
ispartof Granular matter, 2009-10, Vol.11 (5), p.293-306
issn 1434-5021
1434-7636
language eng
recordid cdi_proquest_miscellaneous_743635841
source Springer Nature - Complete Springer Journals
subjects Calibration
Complex Fluids and Microfluidics
Engineering Fluid Dynamics
Engineering Thermodynamics
Foundations
Geoengineering
Geometry
Heat and Mass Transfer
Hydraulics
Industrial Chemistry/Chemical Engineering
Materials Science
Mathematical models
Physics
Physics and Astronomy
Rheology
Simulation
Soft and Granular Matter
title A spherical discrete element model: calibration procedure and incremental response
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T19%3A55%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20spherical%20discrete%20element%20model:%20calibration%20procedure%20and%20incremental%20response&rft.jtitle=Granular%20matter&rft.au=Plassiard,%20Jean-Patrick&rft.date=2009-10-01&rft.volume=11&rft.issue=5&rft.spage=293&rft.epage=306&rft.pages=293-306&rft.issn=1434-5021&rft.eissn=1434-7636&rft_id=info:doi/10.1007/s10035-009-0130-x&rft_dat=%3Cproquest_cross%3E743635841%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=220353752&rft_id=info:pmid/&rfr_iscdi=true