A spherical discrete element model: calibration procedure and incremental response
When using spherical elements within the Discrete Element Method, computational costs can be kept low even for large numbers of elements. However, this oversimplification of the granular geometry has drawbacks when quantitatively assessing the model even for frictional geomaterials. To overcome this...
Gespeichert in:
Veröffentlicht in: | Granular matter 2009-10, Vol.11 (5), p.293-306 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 306 |
---|---|
container_issue | 5 |
container_start_page | 293 |
container_title | Granular matter |
container_volume | 11 |
creator | Plassiard, Jean-Patrick Belheine, Noura Donzé, Frédéric-Victor |
description | When using spherical elements within the Discrete Element Method, computational costs can be kept low even for large numbers of elements. However, this oversimplification of the granular geometry has drawbacks when quantitatively assessing the model even for frictional geomaterials. To overcome this limitation, the local constitutive law must at least take into account the transfer of a moment between elements. This moment, which is added to normal and shear local interaction forces, increases the number of local parameters. Moreover, when local plastic thresholds are considered, the calibration of the model becomes tricky. With such a set of local parameters, a calibration procedure is proposed, which attempts to define the respective role of each parameter in the macroscopic behavior. A series of numerical simulations of triaxial compression tests has been performed to check the capability of this model to get good quantitative results and the incremental behavior of the numerical medium is studied by performing a series of axisymmetric stress probes with varying directions. The corresponding strain responses are measured. From different initial stress states, the results indicate that the incremental response is well described by elastoplasticity with a single mechanism, and a non-associative flow rule. |
doi_str_mv | 10.1007/s10035-009-0130-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743635841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743635841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-e150f7c14eb0c3544e83f5b242781441419d3c0ec05de07e0221dbf6b9a6af183</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG_Fi6fqTD6a1tuy-AULgug5tOlUu_TLpIX135ulC4LgZTKQ5xleXsYuEW4QQN_6MIWKAbIYUEC8O2ILlELGOhHJ8WFXwPGUnXm_BUCVoV6w11Xkh09ytc2bqKy9dTRSRA211I1R25fU3EXhry5cPtZ9Fw2ut1ROjqK8K6O6C8IeDbYjP_Sdp3N2UuWNp4vDu2TvD_dv66d48_L4vF5tYiukHmNCBZW2KKkAK5SUlIpKFVxynaKUKDErhQWyoEoCTcA5lkWVFFme5BWmYsmu57sh0tdEfjRtyE9Nk3fUT95oKRKhUomBvPpDbvvJdSGc4TzUJrTiAcIZsq733lFlBle3ufs2CGbfsZk7NqFjs-_Y7ILDZ8cHtvsg93v4f-kHRIR_GA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>220353752</pqid></control><display><type>article</type><title>A spherical discrete element model: calibration procedure and incremental response</title><source>Springer Nature - Complete Springer Journals</source><creator>Plassiard, Jean-Patrick ; Belheine, Noura ; Donzé, Frédéric-Victor</creator><creatorcontrib>Plassiard, Jean-Patrick ; Belheine, Noura ; Donzé, Frédéric-Victor</creatorcontrib><description>When using spherical elements within the Discrete Element Method, computational costs can be kept low even for large numbers of elements. However, this oversimplification of the granular geometry has drawbacks when quantitatively assessing the model even for frictional geomaterials. To overcome this limitation, the local constitutive law must at least take into account the transfer of a moment between elements. This moment, which is added to normal and shear local interaction forces, increases the number of local parameters. Moreover, when local plastic thresholds are considered, the calibration of the model becomes tricky. With such a set of local parameters, a calibration procedure is proposed, which attempts to define the respective role of each parameter in the macroscopic behavior. A series of numerical simulations of triaxial compression tests has been performed to check the capability of this model to get good quantitative results and the incremental behavior of the numerical medium is studied by performing a series of axisymmetric stress probes with varying directions. The corresponding strain responses are measured. From different initial stress states, the results indicate that the incremental response is well described by elastoplasticity with a single mechanism, and a non-associative flow rule.</description><identifier>ISSN: 1434-5021</identifier><identifier>EISSN: 1434-7636</identifier><identifier>DOI: 10.1007/s10035-009-0130-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Calibration ; Complex Fluids and Microfluidics ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Foundations ; Geoengineering ; Geometry ; Heat and Mass Transfer ; Hydraulics ; Industrial Chemistry/Chemical Engineering ; Materials Science ; Mathematical models ; Physics ; Physics and Astronomy ; Rheology ; Simulation ; Soft and Granular Matter</subject><ispartof>Granular matter, 2009-10, Vol.11 (5), p.293-306</ispartof><rights>Springer-Verlag 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-e150f7c14eb0c3544e83f5b242781441419d3c0ec05de07e0221dbf6b9a6af183</citedby><cites>FETCH-LOGICAL-c347t-e150f7c14eb0c3544e83f5b242781441419d3c0ec05de07e0221dbf6b9a6af183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10035-009-0130-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10035-009-0130-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Plassiard, Jean-Patrick</creatorcontrib><creatorcontrib>Belheine, Noura</creatorcontrib><creatorcontrib>Donzé, Frédéric-Victor</creatorcontrib><title>A spherical discrete element model: calibration procedure and incremental response</title><title>Granular matter</title><addtitle>Granular Matter</addtitle><description>When using spherical elements within the Discrete Element Method, computational costs can be kept low even for large numbers of elements. However, this oversimplification of the granular geometry has drawbacks when quantitatively assessing the model even for frictional geomaterials. To overcome this limitation, the local constitutive law must at least take into account the transfer of a moment between elements. This moment, which is added to normal and shear local interaction forces, increases the number of local parameters. Moreover, when local plastic thresholds are considered, the calibration of the model becomes tricky. With such a set of local parameters, a calibration procedure is proposed, which attempts to define the respective role of each parameter in the macroscopic behavior. A series of numerical simulations of triaxial compression tests has been performed to check the capability of this model to get good quantitative results and the incremental behavior of the numerical medium is studied by performing a series of axisymmetric stress probes with varying directions. The corresponding strain responses are measured. From different initial stress states, the results indicate that the incremental response is well described by elastoplasticity with a single mechanism, and a non-associative flow rule.</description><subject>Calibration</subject><subject>Complex Fluids and Microfluidics</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Foundations</subject><subject>Geoengineering</subject><subject>Geometry</subject><subject>Heat and Mass Transfer</subject><subject>Hydraulics</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Rheology</subject><subject>Simulation</subject><subject>Soft and Granular Matter</subject><issn>1434-5021</issn><issn>1434-7636</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LxDAQhoMouK7-AG_Fi6fqTD6a1tuy-AULgug5tOlUu_TLpIX135ulC4LgZTKQ5xleXsYuEW4QQN_6MIWKAbIYUEC8O2ILlELGOhHJ8WFXwPGUnXm_BUCVoV6w11Xkh09ytc2bqKy9dTRSRA211I1R25fU3EXhry5cPtZ9Fw2ut1ROjqK8K6O6C8IeDbYjP_Sdp3N2UuWNp4vDu2TvD_dv66d48_L4vF5tYiukHmNCBZW2KKkAK5SUlIpKFVxynaKUKDErhQWyoEoCTcA5lkWVFFme5BWmYsmu57sh0tdEfjRtyE9Nk3fUT95oKRKhUomBvPpDbvvJdSGc4TzUJrTiAcIZsq733lFlBle3ufs2CGbfsZk7NqFjs-_Y7ILDZ8cHtvsg93v4f-kHRIR_GA</recordid><startdate>20091001</startdate><enddate>20091001</enddate><creator>Plassiard, Jean-Patrick</creator><creator>Belheine, Noura</creator><creator>Donzé, Frédéric-Victor</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20091001</creationdate><title>A spherical discrete element model: calibration procedure and incremental response</title><author>Plassiard, Jean-Patrick ; Belheine, Noura ; Donzé, Frédéric-Victor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-e150f7c14eb0c3544e83f5b242781441419d3c0ec05de07e0221dbf6b9a6af183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Calibration</topic><topic>Complex Fluids and Microfluidics</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Foundations</topic><topic>Geoengineering</topic><topic>Geometry</topic><topic>Heat and Mass Transfer</topic><topic>Hydraulics</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Rheology</topic><topic>Simulation</topic><topic>Soft and Granular Matter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Plassiard, Jean-Patrick</creatorcontrib><creatorcontrib>Belheine, Noura</creatorcontrib><creatorcontrib>Donzé, Frédéric-Victor</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Granular matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Plassiard, Jean-Patrick</au><au>Belheine, Noura</au><au>Donzé, Frédéric-Victor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A spherical discrete element model: calibration procedure and incremental response</atitle><jtitle>Granular matter</jtitle><stitle>Granular Matter</stitle><date>2009-10-01</date><risdate>2009</risdate><volume>11</volume><issue>5</issue><spage>293</spage><epage>306</epage><pages>293-306</pages><issn>1434-5021</issn><eissn>1434-7636</eissn><abstract>When using spherical elements within the Discrete Element Method, computational costs can be kept low even for large numbers of elements. However, this oversimplification of the granular geometry has drawbacks when quantitatively assessing the model even for frictional geomaterials. To overcome this limitation, the local constitutive law must at least take into account the transfer of a moment between elements. This moment, which is added to normal and shear local interaction forces, increases the number of local parameters. Moreover, when local plastic thresholds are considered, the calibration of the model becomes tricky. With such a set of local parameters, a calibration procedure is proposed, which attempts to define the respective role of each parameter in the macroscopic behavior. A series of numerical simulations of triaxial compression tests has been performed to check the capability of this model to get good quantitative results and the incremental behavior of the numerical medium is studied by performing a series of axisymmetric stress probes with varying directions. The corresponding strain responses are measured. From different initial stress states, the results indicate that the incremental response is well described by elastoplasticity with a single mechanism, and a non-associative flow rule.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s10035-009-0130-x</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1434-5021 |
ispartof | Granular matter, 2009-10, Vol.11 (5), p.293-306 |
issn | 1434-5021 1434-7636 |
language | eng |
recordid | cdi_proquest_miscellaneous_743635841 |
source | Springer Nature - Complete Springer Journals |
subjects | Calibration Complex Fluids and Microfluidics Engineering Fluid Dynamics Engineering Thermodynamics Foundations Geoengineering Geometry Heat and Mass Transfer Hydraulics Industrial Chemistry/Chemical Engineering Materials Science Mathematical models Physics Physics and Astronomy Rheology Simulation Soft and Granular Matter |
title | A spherical discrete element model: calibration procedure and incremental response |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T19%3A55%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20spherical%20discrete%20element%20model:%20calibration%20procedure%20and%20incremental%20response&rft.jtitle=Granular%20matter&rft.au=Plassiard,%20Jean-Patrick&rft.date=2009-10-01&rft.volume=11&rft.issue=5&rft.spage=293&rft.epage=306&rft.pages=293-306&rft.issn=1434-5021&rft.eissn=1434-7636&rft_id=info:doi/10.1007/s10035-009-0130-x&rft_dat=%3Cproquest_cross%3E743635841%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=220353752&rft_id=info:pmid/&rfr_iscdi=true |