Resonance Fluorescence of a Single Artificial Atom
An atom in open space can be detected by means of resonant absorption and reemission of electromagnetic waves, known as resonance fluorescence, which is a fundamental phenomenon of quantum optics. We report on the observation of scattering of propagating waves by a single artificial atom. The behavi...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2010-02, Vol.327 (5967), p.840-843 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 843 |
---|---|
container_issue | 5967 |
container_start_page | 840 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 327 |
creator | Astafiev, O Zagoskin, A.M Abdumalikov, A.A. Jr Pashkin, Yu.A Yamamoto, T Inomata, K Nakamura, Y Tsai, J.S |
description | An atom in open space can be detected by means of resonant absorption and reemission of electromagnetic waves, known as resonance fluorescence, which is a fundamental phenomenon of quantum optics. We report on the observation of scattering of propagating waves by a single artificial atom. The behavior of the artificial atom, a superconducting macroscopic two-level system, is in a quantitative agreement with the predictions of quantum optics for a pointlike scatterer interacting with the electromagnetic field in one-dimensional open space. The strong atom-field interaction as revealed in a high degree of extinction of propagating waves will allow applications of controllable artificial atoms in quantum optics and photonics. |
doi_str_mv | 10.1126/science.1181918 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_743632245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40509905</jstor_id><sourcerecordid>40509905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c568t-dac99b154df2849db724a1bc1a7c74de09bc151f6d99eaf7039452a79b2fd6313</originalsourceid><addsrcrecordid>eNqFkM1LwzAYh4Mobk7PntQiiKfqm6-2OY7hFwwEp-eQpol0dI0m7cH_3pTVCV48JeH35EneH0KnGG4wJtlt0LVptYmHAgtc7KEpBsFTQYDuoykAzdICcj5BRyGsAWIm6CGaEMAcmOBTRF5McK2KjuS-6Z03QQ_CxNlEJau6fW9MMvddbWtdqyaZd25zjA6saoI5GdcZeru_e108psvnh6fFfJlqnhVdWiktRIk5qywpmKjKnDCFS41VrnNWGRBxz7HNKiGMsjlQwThRuSiJrTKK6Qxdb70f3n32JnRyU8ffNY1qjeuDzBnNKCGM_09SmhW8iLPP0OUfcu1638YxJME0A4rJoLvdQtq7ELyx8sPXG-W_JAY51C7H2uVYe7xxPmr7cmOqHf_TcwSuRkAFrRrrY-N1-OUIA07IIDrbcuvQOb_LYwpCwOC52OZWOanefXS8reIrFHABRMTWvgEfnpw1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213603125</pqid></control><display><type>article</type><title>Resonance Fluorescence of a Single Artificial Atom</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><creator>Astafiev, O ; Zagoskin, A.M ; Abdumalikov, A.A. Jr ; Pashkin, Yu.A ; Yamamoto, T ; Inomata, K ; Nakamura, Y ; Tsai, J.S</creator><creatorcontrib>Astafiev, O ; Zagoskin, A.M ; Abdumalikov, A.A. Jr ; Pashkin, Yu.A ; Yamamoto, T ; Inomata, K ; Nakamura, Y ; Tsai, J.S</creatorcontrib><description>An atom in open space can be detected by means of resonant absorption and reemission of electromagnetic waves, known as resonance fluorescence, which is a fundamental phenomenon of quantum optics. We report on the observation of scattering of propagating waves by a single artificial atom. The behavior of the artificial atom, a superconducting macroscopic two-level system, is in a quantitative agreement with the predictions of quantum optics for a pointlike scatterer interacting with the electromagnetic field in one-dimensional open space. The strong atom-field interaction as revealed in a high degree of extinction of propagating waves will allow applications of controllable artificial atoms in quantum optics and photonics.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1181918</identifier><identifier>PMID: 20150495</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Association for the Advancement of Science</publisher><subject>Atomic and molecular physics ; Atomic interactions ; Atomic properties and interactions with photons ; Atoms ; Atoms & subatomic particles ; Cooperative phenomena; superradiance and superfluorescence ; Elastic scattering ; Electromagnetic interactions ; Electromagnetism ; Exact sciences and technology ; Fluorescence ; Fluorescence, phosphorescence (including quenching) ; Fundamental areas of phenomenology (including applications) ; Microwaves ; Optics ; Physics ; Quantum optics ; Quantum physics ; Resonance fluorescence ; Resonance scattering ; Transmission lines ; Waves</subject><ispartof>Science (American Association for the Advancement of Science), 2010-02, Vol.327 (5967), p.840-843</ispartof><rights>Copyright 2010 American Association for the Advancement of Science</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2010, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c568t-dac99b154df2849db724a1bc1a7c74de09bc151f6d99eaf7039452a79b2fd6313</citedby><cites>FETCH-LOGICAL-c568t-dac99b154df2849db724a1bc1a7c74de09bc151f6d99eaf7039452a79b2fd6313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40509905$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40509905$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,800,2871,2872,27905,27906,57998,58231</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22405228$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20150495$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Astafiev, O</creatorcontrib><creatorcontrib>Zagoskin, A.M</creatorcontrib><creatorcontrib>Abdumalikov, A.A. Jr</creatorcontrib><creatorcontrib>Pashkin, Yu.A</creatorcontrib><creatorcontrib>Yamamoto, T</creatorcontrib><creatorcontrib>Inomata, K</creatorcontrib><creatorcontrib>Nakamura, Y</creatorcontrib><creatorcontrib>Tsai, J.S</creatorcontrib><title>Resonance Fluorescence of a Single Artificial Atom</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>An atom in open space can be detected by means of resonant absorption and reemission of electromagnetic waves, known as resonance fluorescence, which is a fundamental phenomenon of quantum optics. We report on the observation of scattering of propagating waves by a single artificial atom. The behavior of the artificial atom, a superconducting macroscopic two-level system, is in a quantitative agreement with the predictions of quantum optics for a pointlike scatterer interacting with the electromagnetic field in one-dimensional open space. The strong atom-field interaction as revealed in a high degree of extinction of propagating waves will allow applications of controllable artificial atoms in quantum optics and photonics.</description><subject>Atomic and molecular physics</subject><subject>Atomic interactions</subject><subject>Atomic properties and interactions with photons</subject><subject>Atoms</subject><subject>Atoms & subatomic particles</subject><subject>Cooperative phenomena; superradiance and superfluorescence</subject><subject>Elastic scattering</subject><subject>Electromagnetic interactions</subject><subject>Electromagnetism</subject><subject>Exact sciences and technology</subject><subject>Fluorescence</subject><subject>Fluorescence, phosphorescence (including quenching)</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Microwaves</subject><subject>Optics</subject><subject>Physics</subject><subject>Quantum optics</subject><subject>Quantum physics</subject><subject>Resonance fluorescence</subject><subject>Resonance scattering</subject><subject>Transmission lines</subject><subject>Waves</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LwzAYh4Mobk7PntQiiKfqm6-2OY7hFwwEp-eQpol0dI0m7cH_3pTVCV48JeH35EneH0KnGG4wJtlt0LVptYmHAgtc7KEpBsFTQYDuoykAzdICcj5BRyGsAWIm6CGaEMAcmOBTRF5McK2KjuS-6Z03QQ_CxNlEJau6fW9MMvddbWtdqyaZd25zjA6saoI5GdcZeru_e108psvnh6fFfJlqnhVdWiktRIk5qywpmKjKnDCFS41VrnNWGRBxz7HNKiGMsjlQwThRuSiJrTKK6Qxdb70f3n32JnRyU8ffNY1qjeuDzBnNKCGM_09SmhW8iLPP0OUfcu1638YxJME0A4rJoLvdQtq7ELyx8sPXG-W_JAY51C7H2uVYe7xxPmr7cmOqHf_TcwSuRkAFrRrrY-N1-OUIA07IIDrbcuvQOb_LYwpCwOC52OZWOanefXS8reIrFHABRMTWvgEfnpw1</recordid><startdate>20100212</startdate><enddate>20100212</enddate><creator>Astafiev, O</creator><creator>Zagoskin, A.M</creator><creator>Abdumalikov, A.A. Jr</creator><creator>Pashkin, Yu.A</creator><creator>Yamamoto, T</creator><creator>Inomata, K</creator><creator>Nakamura, Y</creator><creator>Tsai, J.S</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>FBQ</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20100212</creationdate><title>Resonance Fluorescence of a Single Artificial Atom</title><author>Astafiev, O ; Zagoskin, A.M ; Abdumalikov, A.A. Jr ; Pashkin, Yu.A ; Yamamoto, T ; Inomata, K ; Nakamura, Y ; Tsai, J.S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c568t-dac99b154df2849db724a1bc1a7c74de09bc151f6d99eaf7039452a79b2fd6313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Atomic and molecular physics</topic><topic>Atomic interactions</topic><topic>Atomic properties and interactions with photons</topic><topic>Atoms</topic><topic>Atoms & subatomic particles</topic><topic>Cooperative phenomena; superradiance and superfluorescence</topic><topic>Elastic scattering</topic><topic>Electromagnetic interactions</topic><topic>Electromagnetism</topic><topic>Exact sciences and technology</topic><topic>Fluorescence</topic><topic>Fluorescence, phosphorescence (including quenching)</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Microwaves</topic><topic>Optics</topic><topic>Physics</topic><topic>Quantum optics</topic><topic>Quantum physics</topic><topic>Resonance fluorescence</topic><topic>Resonance scattering</topic><topic>Transmission lines</topic><topic>Waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Astafiev, O</creatorcontrib><creatorcontrib>Zagoskin, A.M</creatorcontrib><creatorcontrib>Abdumalikov, A.A. Jr</creatorcontrib><creatorcontrib>Pashkin, Yu.A</creatorcontrib><creatorcontrib>Yamamoto, T</creatorcontrib><creatorcontrib>Inomata, K</creatorcontrib><creatorcontrib>Nakamura, Y</creatorcontrib><creatorcontrib>Tsai, J.S</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Astafiev, O</au><au>Zagoskin, A.M</au><au>Abdumalikov, A.A. Jr</au><au>Pashkin, Yu.A</au><au>Yamamoto, T</au><au>Inomata, K</au><au>Nakamura, Y</au><au>Tsai, J.S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resonance Fluorescence of a Single Artificial Atom</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2010-02-12</date><risdate>2010</risdate><volume>327</volume><issue>5967</issue><spage>840</spage><epage>843</epage><pages>840-843</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>An atom in open space can be detected by means of resonant absorption and reemission of electromagnetic waves, known as resonance fluorescence, which is a fundamental phenomenon of quantum optics. We report on the observation of scattering of propagating waves by a single artificial atom. The behavior of the artificial atom, a superconducting macroscopic two-level system, is in a quantitative agreement with the predictions of quantum optics for a pointlike scatterer interacting with the electromagnetic field in one-dimensional open space. The strong atom-field interaction as revealed in a high degree of extinction of propagating waves will allow applications of controllable artificial atoms in quantum optics and photonics.</abstract><cop>Washington, DC</cop><pub>American Association for the Advancement of Science</pub><pmid>20150495</pmid><doi>10.1126/science.1181918</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2010-02, Vol.327 (5967), p.840-843 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_743632245 |
source | American Association for the Advancement of Science; Jstor Complete Legacy |
subjects | Atomic and molecular physics Atomic interactions Atomic properties and interactions with photons Atoms Atoms & subatomic particles Cooperative phenomena superradiance and superfluorescence Elastic scattering Electromagnetic interactions Electromagnetism Exact sciences and technology Fluorescence Fluorescence, phosphorescence (including quenching) Fundamental areas of phenomenology (including applications) Microwaves Optics Physics Quantum optics Quantum physics Resonance fluorescence Resonance scattering Transmission lines Waves |
title | Resonance Fluorescence of a Single Artificial Atom |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T20%3A27%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resonance%20Fluorescence%20of%20a%20Single%20Artificial%20Atom&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Astafiev,%20O&rft.date=2010-02-12&rft.volume=327&rft.issue=5967&rft.spage=840&rft.epage=843&rft.pages=840-843&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1181918&rft_dat=%3Cjstor_proqu%3E40509905%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213603125&rft_id=info:pmid/20150495&rft_jstor_id=40509905&rfr_iscdi=true |