Resonance Fluorescence of a Single Artificial Atom

An atom in open space can be detected by means of resonant absorption and reemission of electromagnetic waves, known as resonance fluorescence, which is a fundamental phenomenon of quantum optics. We report on the observation of scattering of propagating waves by a single artificial atom. The behavi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2010-02, Vol.327 (5967), p.840-843
Hauptverfasser: Astafiev, O, Zagoskin, A.M, Abdumalikov, A.A. Jr, Pashkin, Yu.A, Yamamoto, T, Inomata, K, Nakamura, Y, Tsai, J.S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 843
container_issue 5967
container_start_page 840
container_title Science (American Association for the Advancement of Science)
container_volume 327
creator Astafiev, O
Zagoskin, A.M
Abdumalikov, A.A. Jr
Pashkin, Yu.A
Yamamoto, T
Inomata, K
Nakamura, Y
Tsai, J.S
description An atom in open space can be detected by means of resonant absorption and reemission of electromagnetic waves, known as resonance fluorescence, which is a fundamental phenomenon of quantum optics. We report on the observation of scattering of propagating waves by a single artificial atom. The behavior of the artificial atom, a superconducting macroscopic two-level system, is in a quantitative agreement with the predictions of quantum optics for a pointlike scatterer interacting with the electromagnetic field in one-dimensional open space. The strong atom-field interaction as revealed in a high degree of extinction of propagating waves will allow applications of controllable artificial atoms in quantum optics and photonics.
doi_str_mv 10.1126/science.1181918
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_743632245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40509905</jstor_id><sourcerecordid>40509905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c568t-dac99b154df2849db724a1bc1a7c74de09bc151f6d99eaf7039452a79b2fd6313</originalsourceid><addsrcrecordid>eNqFkM1LwzAYh4Mobk7PntQiiKfqm6-2OY7hFwwEp-eQpol0dI0m7cH_3pTVCV48JeH35EneH0KnGG4wJtlt0LVptYmHAgtc7KEpBsFTQYDuoykAzdICcj5BRyGsAWIm6CGaEMAcmOBTRF5McK2KjuS-6Z03QQ_CxNlEJau6fW9MMvddbWtdqyaZd25zjA6saoI5GdcZeru_e108psvnh6fFfJlqnhVdWiktRIk5qywpmKjKnDCFS41VrnNWGRBxz7HNKiGMsjlQwThRuSiJrTKK6Qxdb70f3n32JnRyU8ffNY1qjeuDzBnNKCGM_09SmhW8iLPP0OUfcu1638YxJME0A4rJoLvdQtq7ELyx8sPXG-W_JAY51C7H2uVYe7xxPmr7cmOqHf_TcwSuRkAFrRrrY-N1-OUIA07IIDrbcuvQOb_LYwpCwOC52OZWOanefXS8reIrFHABRMTWvgEfnpw1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213603125</pqid></control><display><type>article</type><title>Resonance Fluorescence of a Single Artificial Atom</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><creator>Astafiev, O ; Zagoskin, A.M ; Abdumalikov, A.A. Jr ; Pashkin, Yu.A ; Yamamoto, T ; Inomata, K ; Nakamura, Y ; Tsai, J.S</creator><creatorcontrib>Astafiev, O ; Zagoskin, A.M ; Abdumalikov, A.A. Jr ; Pashkin, Yu.A ; Yamamoto, T ; Inomata, K ; Nakamura, Y ; Tsai, J.S</creatorcontrib><description>An atom in open space can be detected by means of resonant absorption and reemission of electromagnetic waves, known as resonance fluorescence, which is a fundamental phenomenon of quantum optics. We report on the observation of scattering of propagating waves by a single artificial atom. The behavior of the artificial atom, a superconducting macroscopic two-level system, is in a quantitative agreement with the predictions of quantum optics for a pointlike scatterer interacting with the electromagnetic field in one-dimensional open space. The strong atom-field interaction as revealed in a high degree of extinction of propagating waves will allow applications of controllable artificial atoms in quantum optics and photonics.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1181918</identifier><identifier>PMID: 20150495</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Association for the Advancement of Science</publisher><subject>Atomic and molecular physics ; Atomic interactions ; Atomic properties and interactions with photons ; Atoms ; Atoms &amp; subatomic particles ; Cooperative phenomena; superradiance and superfluorescence ; Elastic scattering ; Electromagnetic interactions ; Electromagnetism ; Exact sciences and technology ; Fluorescence ; Fluorescence, phosphorescence (including quenching) ; Fundamental areas of phenomenology (including applications) ; Microwaves ; Optics ; Physics ; Quantum optics ; Quantum physics ; Resonance fluorescence ; Resonance scattering ; Transmission lines ; Waves</subject><ispartof>Science (American Association for the Advancement of Science), 2010-02, Vol.327 (5967), p.840-843</ispartof><rights>Copyright 2010 American Association for the Advancement of Science</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2010, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c568t-dac99b154df2849db724a1bc1a7c74de09bc151f6d99eaf7039452a79b2fd6313</citedby><cites>FETCH-LOGICAL-c568t-dac99b154df2849db724a1bc1a7c74de09bc151f6d99eaf7039452a79b2fd6313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40509905$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40509905$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,800,2871,2872,27905,27906,57998,58231</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22405228$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20150495$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Astafiev, O</creatorcontrib><creatorcontrib>Zagoskin, A.M</creatorcontrib><creatorcontrib>Abdumalikov, A.A. Jr</creatorcontrib><creatorcontrib>Pashkin, Yu.A</creatorcontrib><creatorcontrib>Yamamoto, T</creatorcontrib><creatorcontrib>Inomata, K</creatorcontrib><creatorcontrib>Nakamura, Y</creatorcontrib><creatorcontrib>Tsai, J.S</creatorcontrib><title>Resonance Fluorescence of a Single Artificial Atom</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>An atom in open space can be detected by means of resonant absorption and reemission of electromagnetic waves, known as resonance fluorescence, which is a fundamental phenomenon of quantum optics. We report on the observation of scattering of propagating waves by a single artificial atom. The behavior of the artificial atom, a superconducting macroscopic two-level system, is in a quantitative agreement with the predictions of quantum optics for a pointlike scatterer interacting with the electromagnetic field in one-dimensional open space. The strong atom-field interaction as revealed in a high degree of extinction of propagating waves will allow applications of controllable artificial atoms in quantum optics and photonics.</description><subject>Atomic and molecular physics</subject><subject>Atomic interactions</subject><subject>Atomic properties and interactions with photons</subject><subject>Atoms</subject><subject>Atoms &amp; subatomic particles</subject><subject>Cooperative phenomena; superradiance and superfluorescence</subject><subject>Elastic scattering</subject><subject>Electromagnetic interactions</subject><subject>Electromagnetism</subject><subject>Exact sciences and technology</subject><subject>Fluorescence</subject><subject>Fluorescence, phosphorescence (including quenching)</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Microwaves</subject><subject>Optics</subject><subject>Physics</subject><subject>Quantum optics</subject><subject>Quantum physics</subject><subject>Resonance fluorescence</subject><subject>Resonance scattering</subject><subject>Transmission lines</subject><subject>Waves</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LwzAYh4Mobk7PntQiiKfqm6-2OY7hFwwEp-eQpol0dI0m7cH_3pTVCV48JeH35EneH0KnGG4wJtlt0LVptYmHAgtc7KEpBsFTQYDuoykAzdICcj5BRyGsAWIm6CGaEMAcmOBTRF5McK2KjuS-6Z03QQ_CxNlEJau6fW9MMvddbWtdqyaZd25zjA6saoI5GdcZeru_e108psvnh6fFfJlqnhVdWiktRIk5qywpmKjKnDCFS41VrnNWGRBxz7HNKiGMsjlQwThRuSiJrTKK6Qxdb70f3n32JnRyU8ffNY1qjeuDzBnNKCGM_09SmhW8iLPP0OUfcu1638YxJME0A4rJoLvdQtq7ELyx8sPXG-W_JAY51C7H2uVYe7xxPmr7cmOqHf_TcwSuRkAFrRrrY-N1-OUIA07IIDrbcuvQOb_LYwpCwOC52OZWOanefXS8reIrFHABRMTWvgEfnpw1</recordid><startdate>20100212</startdate><enddate>20100212</enddate><creator>Astafiev, O</creator><creator>Zagoskin, A.M</creator><creator>Abdumalikov, A.A. Jr</creator><creator>Pashkin, Yu.A</creator><creator>Yamamoto, T</creator><creator>Inomata, K</creator><creator>Nakamura, Y</creator><creator>Tsai, J.S</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>FBQ</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20100212</creationdate><title>Resonance Fluorescence of a Single Artificial Atom</title><author>Astafiev, O ; Zagoskin, A.M ; Abdumalikov, A.A. Jr ; Pashkin, Yu.A ; Yamamoto, T ; Inomata, K ; Nakamura, Y ; Tsai, J.S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c568t-dac99b154df2849db724a1bc1a7c74de09bc151f6d99eaf7039452a79b2fd6313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Atomic and molecular physics</topic><topic>Atomic interactions</topic><topic>Atomic properties and interactions with photons</topic><topic>Atoms</topic><topic>Atoms &amp; subatomic particles</topic><topic>Cooperative phenomena; superradiance and superfluorescence</topic><topic>Elastic scattering</topic><topic>Electromagnetic interactions</topic><topic>Electromagnetism</topic><topic>Exact sciences and technology</topic><topic>Fluorescence</topic><topic>Fluorescence, phosphorescence (including quenching)</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Microwaves</topic><topic>Optics</topic><topic>Physics</topic><topic>Quantum optics</topic><topic>Quantum physics</topic><topic>Resonance fluorescence</topic><topic>Resonance scattering</topic><topic>Transmission lines</topic><topic>Waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Astafiev, O</creatorcontrib><creatorcontrib>Zagoskin, A.M</creatorcontrib><creatorcontrib>Abdumalikov, A.A. Jr</creatorcontrib><creatorcontrib>Pashkin, Yu.A</creatorcontrib><creatorcontrib>Yamamoto, T</creatorcontrib><creatorcontrib>Inomata, K</creatorcontrib><creatorcontrib>Nakamura, Y</creatorcontrib><creatorcontrib>Tsai, J.S</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Astafiev, O</au><au>Zagoskin, A.M</au><au>Abdumalikov, A.A. Jr</au><au>Pashkin, Yu.A</au><au>Yamamoto, T</au><au>Inomata, K</au><au>Nakamura, Y</au><au>Tsai, J.S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resonance Fluorescence of a Single Artificial Atom</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2010-02-12</date><risdate>2010</risdate><volume>327</volume><issue>5967</issue><spage>840</spage><epage>843</epage><pages>840-843</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>An atom in open space can be detected by means of resonant absorption and reemission of electromagnetic waves, known as resonance fluorescence, which is a fundamental phenomenon of quantum optics. We report on the observation of scattering of propagating waves by a single artificial atom. The behavior of the artificial atom, a superconducting macroscopic two-level system, is in a quantitative agreement with the predictions of quantum optics for a pointlike scatterer interacting with the electromagnetic field in one-dimensional open space. The strong atom-field interaction as revealed in a high degree of extinction of propagating waves will allow applications of controllable artificial atoms in quantum optics and photonics.</abstract><cop>Washington, DC</cop><pub>American Association for the Advancement of Science</pub><pmid>20150495</pmid><doi>10.1126/science.1181918</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2010-02, Vol.327 (5967), p.840-843
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_743632245
source American Association for the Advancement of Science; Jstor Complete Legacy
subjects Atomic and molecular physics
Atomic interactions
Atomic properties and interactions with photons
Atoms
Atoms & subatomic particles
Cooperative phenomena
superradiance and superfluorescence
Elastic scattering
Electromagnetic interactions
Electromagnetism
Exact sciences and technology
Fluorescence
Fluorescence, phosphorescence (including quenching)
Fundamental areas of phenomenology (including applications)
Microwaves
Optics
Physics
Quantum optics
Quantum physics
Resonance fluorescence
Resonance scattering
Transmission lines
Waves
title Resonance Fluorescence of a Single Artificial Atom
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T20%3A27%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resonance%20Fluorescence%20of%20a%20Single%20Artificial%20Atom&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Astafiev,%20O&rft.date=2010-02-12&rft.volume=327&rft.issue=5967&rft.spage=840&rft.epage=843&rft.pages=840-843&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1181918&rft_dat=%3Cjstor_proqu%3E40509905%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213603125&rft_id=info:pmid/20150495&rft_jstor_id=40509905&rfr_iscdi=true