A simple device using magnetic transportation for droplet-based PCR

The Polymerase chain reaction (PCR) was successfully and rapidly performed in a simple reaction device devoid of channels, pumps, valves, or other control elements used in conventional lab-on-a-chip technology. The basic concept of this device is the transportation of aqueous droplets containing hyd...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedical microdevices 2007-10, Vol.9 (5), p.695-702
Hauptverfasser: Ohashi, Tetsuo, Kuyama, Hiroki, Hanafusa, Nobuhiro, Togawa, Yoshiyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 702
container_issue 5
container_start_page 695
container_title Biomedical microdevices
container_volume 9
creator Ohashi, Tetsuo
Kuyama, Hiroki
Hanafusa, Nobuhiro
Togawa, Yoshiyuki
description The Polymerase chain reaction (PCR) was successfully and rapidly performed in a simple reaction device devoid of channels, pumps, valves, or other control elements used in conventional lab-on-a-chip technology. The basic concept of this device is the transportation of aqueous droplets containing hydrophilic magnetic beads in a flat-bottomed, tray-type reactor filled with silicone oil. The whole droplets sink to the bottom of the reactor because their specific gravity is greater than that of the silicone oil used here. The droplets follow the movement of a magnet located underneath the reactor. The notable advantage of the droplet-based PCR is the ability to switch rapidly the proposed reaction temperature by moving the droplets to the required temperature zones in the temperature gradient. The droplet-based reciprocative thermal cycling was performed by moving the droplets composed of PCR reaction mixture to the designated temperature zones on a linear temperature gradient from 50 degrees C to 94 degrees C generated on the flat bottom plate of the tray reactor. Using human-derived DNA containing the mitochondria genes as the amplification targets, the droplet-based PCR with magnetic reciprocative thermal cycling successfully provided the five PCR products ranging from 126 to 1,219 bp in 11 min with 30 cycles. More remarkably, the human genomic gene amplification targeting glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene was accomplished rapidly in 3.6 min with 40 cycles.
doi_str_mv 10.1007/s10544-007-9078-y
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_743623293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743623293</sourcerecordid><originalsourceid>FETCH-LOGICAL-p229t-17a27def8685445574fa2022a863763c3b09c3b894a879515b474cbcf1c8d2ee3</originalsourceid><addsrcrecordid>eNqF0EtLxDAQB_AgiruufgAvEjzoKZrJO8el-IIFRfRc0jZdumwfJq2w396A68WDXmb-hx_DzCB0DvQGKNW3EagUgqRILNWG7A7QHKRmxGgDhylzowkDrWboJMYNpWCVUsdoBlpSaYyYo2yJY9MOW48r_9mUHk-x6da4devOj02Jx-C6OPRhdGPTd7juA65Cn_xIChd9hV-y11N0VLtt9Gf7vkDv93dv2SNZPT88ZcsVGRizIwHtmK58bZRJW0upRe0YZcwZxbXiJS-oTcVY4Yy2EmQhtCiLsobSVMx7vkDX33OH0H9MPo5528TSb7eu8_0Ucy24YpxZnuTVn1IZsNRY9i9klAtQQBO8_AU3_RS6dG7OgIFQ0pqELvZoKlpf5UNoWhd2-c-7-ReHFn_E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>212146598</pqid></control><display><type>article</type><title>A simple device using magnetic transportation for droplet-based PCR</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Ohashi, Tetsuo ; Kuyama, Hiroki ; Hanafusa, Nobuhiro ; Togawa, Yoshiyuki</creator><creatorcontrib>Ohashi, Tetsuo ; Kuyama, Hiroki ; Hanafusa, Nobuhiro ; Togawa, Yoshiyuki</creatorcontrib><description>The Polymerase chain reaction (PCR) was successfully and rapidly performed in a simple reaction device devoid of channels, pumps, valves, or other control elements used in conventional lab-on-a-chip technology. The basic concept of this device is the transportation of aqueous droplets containing hydrophilic magnetic beads in a flat-bottomed, tray-type reactor filled with silicone oil. The whole droplets sink to the bottom of the reactor because their specific gravity is greater than that of the silicone oil used here. The droplets follow the movement of a magnet located underneath the reactor. The notable advantage of the droplet-based PCR is the ability to switch rapidly the proposed reaction temperature by moving the droplets to the required temperature zones in the temperature gradient. The droplet-based reciprocative thermal cycling was performed by moving the droplets composed of PCR reaction mixture to the designated temperature zones on a linear temperature gradient from 50 degrees C to 94 degrees C generated on the flat bottom plate of the tray reactor. Using human-derived DNA containing the mitochondria genes as the amplification targets, the droplet-based PCR with magnetic reciprocative thermal cycling successfully provided the five PCR products ranging from 126 to 1,219 bp in 11 min with 30 cycles. More remarkably, the human genomic gene amplification targeting glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene was accomplished rapidly in 3.6 min with 40 cycles.</description><identifier>ISSN: 1387-2176</identifier><identifier>EISSN: 1572-8781</identifier><identifier>DOI: 10.1007/s10544-007-9078-y</identifier><identifier>PMID: 17505884</identifier><identifier>CODEN: BMICFC</identifier><language>eng</language><publisher>United States: Springer Nature B.V</publisher><subject>Base Pairing ; Chemical reactors ; DNA - genetics ; DNA, Mitochondrial - genetics ; Equipment Design ; Genes ; Glyceraldehyde-3-Phosphate Dehydrogenases - genetics ; Humans ; Magnetics ; Magnetism ; Microfluidic Analytical Techniques - instrumentation ; Microfluidic Analytical Techniques - methods ; Polymerase Chain Reaction - instrumentation ; Polymerase Chain Reaction - methods ; Proteins ; Scientific apparatus &amp; instruments ; Temperature ; Time Factors</subject><ispartof>Biomedical microdevices, 2007-10, Vol.9 (5), p.695-702</ispartof><rights>Springer Science+Business Media, LLC 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17505884$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ohashi, Tetsuo</creatorcontrib><creatorcontrib>Kuyama, Hiroki</creatorcontrib><creatorcontrib>Hanafusa, Nobuhiro</creatorcontrib><creatorcontrib>Togawa, Yoshiyuki</creatorcontrib><title>A simple device using magnetic transportation for droplet-based PCR</title><title>Biomedical microdevices</title><addtitle>Biomed Microdevices</addtitle><description>The Polymerase chain reaction (PCR) was successfully and rapidly performed in a simple reaction device devoid of channels, pumps, valves, or other control elements used in conventional lab-on-a-chip technology. The basic concept of this device is the transportation of aqueous droplets containing hydrophilic magnetic beads in a flat-bottomed, tray-type reactor filled with silicone oil. The whole droplets sink to the bottom of the reactor because their specific gravity is greater than that of the silicone oil used here. The droplets follow the movement of a magnet located underneath the reactor. The notable advantage of the droplet-based PCR is the ability to switch rapidly the proposed reaction temperature by moving the droplets to the required temperature zones in the temperature gradient. The droplet-based reciprocative thermal cycling was performed by moving the droplets composed of PCR reaction mixture to the designated temperature zones on a linear temperature gradient from 50 degrees C to 94 degrees C generated on the flat bottom plate of the tray reactor. Using human-derived DNA containing the mitochondria genes as the amplification targets, the droplet-based PCR with magnetic reciprocative thermal cycling successfully provided the five PCR products ranging from 126 to 1,219 bp in 11 min with 30 cycles. More remarkably, the human genomic gene amplification targeting glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene was accomplished rapidly in 3.6 min with 40 cycles.</description><subject>Base Pairing</subject><subject>Chemical reactors</subject><subject>DNA - genetics</subject><subject>DNA, Mitochondrial - genetics</subject><subject>Equipment Design</subject><subject>Genes</subject><subject>Glyceraldehyde-3-Phosphate Dehydrogenases - genetics</subject><subject>Humans</subject><subject>Magnetics</subject><subject>Magnetism</subject><subject>Microfluidic Analytical Techniques - instrumentation</subject><subject>Microfluidic Analytical Techniques - methods</subject><subject>Polymerase Chain Reaction - instrumentation</subject><subject>Polymerase Chain Reaction - methods</subject><subject>Proteins</subject><subject>Scientific apparatus &amp; instruments</subject><subject>Temperature</subject><subject>Time Factors</subject><issn>1387-2176</issn><issn>1572-8781</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0EtLxDAQB_AgiruufgAvEjzoKZrJO8el-IIFRfRc0jZdumwfJq2w396A68WDXmb-hx_DzCB0DvQGKNW3EagUgqRILNWG7A7QHKRmxGgDhylzowkDrWboJMYNpWCVUsdoBlpSaYyYo2yJY9MOW48r_9mUHk-x6da4devOj02Jx-C6OPRhdGPTd7juA65Cn_xIChd9hV-y11N0VLtt9Gf7vkDv93dv2SNZPT88ZcsVGRizIwHtmK58bZRJW0upRe0YZcwZxbXiJS-oTcVY4Yy2EmQhtCiLsobSVMx7vkDX33OH0H9MPo5528TSb7eu8_0Ucy24YpxZnuTVn1IZsNRY9i9klAtQQBO8_AU3_RS6dG7OgIFQ0pqELvZoKlpf5UNoWhd2-c-7-ReHFn_E</recordid><startdate>200710</startdate><enddate>200710</enddate><creator>Ohashi, Tetsuo</creator><creator>Kuyama, Hiroki</creator><creator>Hanafusa, Nobuhiro</creator><creator>Togawa, Yoshiyuki</creator><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7SP</scope><scope>7TB</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>200710</creationdate><title>A simple device using magnetic transportation for droplet-based PCR</title><author>Ohashi, Tetsuo ; Kuyama, Hiroki ; Hanafusa, Nobuhiro ; Togawa, Yoshiyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p229t-17a27def8685445574fa2022a863763c3b09c3b894a879515b474cbcf1c8d2ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Base Pairing</topic><topic>Chemical reactors</topic><topic>DNA - genetics</topic><topic>DNA, Mitochondrial - genetics</topic><topic>Equipment Design</topic><topic>Genes</topic><topic>Glyceraldehyde-3-Phosphate Dehydrogenases - genetics</topic><topic>Humans</topic><topic>Magnetics</topic><topic>Magnetism</topic><topic>Microfluidic Analytical Techniques - instrumentation</topic><topic>Microfluidic Analytical Techniques - methods</topic><topic>Polymerase Chain Reaction - instrumentation</topic><topic>Polymerase Chain Reaction - methods</topic><topic>Proteins</topic><topic>Scientific apparatus &amp; instruments</topic><topic>Temperature</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ohashi, Tetsuo</creatorcontrib><creatorcontrib>Kuyama, Hiroki</creatorcontrib><creatorcontrib>Hanafusa, Nobuhiro</creatorcontrib><creatorcontrib>Togawa, Yoshiyuki</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Biomedical microdevices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ohashi, Tetsuo</au><au>Kuyama, Hiroki</au><au>Hanafusa, Nobuhiro</au><au>Togawa, Yoshiyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A simple device using magnetic transportation for droplet-based PCR</atitle><jtitle>Biomedical microdevices</jtitle><addtitle>Biomed Microdevices</addtitle><date>2007-10</date><risdate>2007</risdate><volume>9</volume><issue>5</issue><spage>695</spage><epage>702</epage><pages>695-702</pages><issn>1387-2176</issn><eissn>1572-8781</eissn><coden>BMICFC</coden><abstract>The Polymerase chain reaction (PCR) was successfully and rapidly performed in a simple reaction device devoid of channels, pumps, valves, or other control elements used in conventional lab-on-a-chip technology. The basic concept of this device is the transportation of aqueous droplets containing hydrophilic magnetic beads in a flat-bottomed, tray-type reactor filled with silicone oil. The whole droplets sink to the bottom of the reactor because their specific gravity is greater than that of the silicone oil used here. The droplets follow the movement of a magnet located underneath the reactor. The notable advantage of the droplet-based PCR is the ability to switch rapidly the proposed reaction temperature by moving the droplets to the required temperature zones in the temperature gradient. The droplet-based reciprocative thermal cycling was performed by moving the droplets composed of PCR reaction mixture to the designated temperature zones on a linear temperature gradient from 50 degrees C to 94 degrees C generated on the flat bottom plate of the tray reactor. Using human-derived DNA containing the mitochondria genes as the amplification targets, the droplet-based PCR with magnetic reciprocative thermal cycling successfully provided the five PCR products ranging from 126 to 1,219 bp in 11 min with 30 cycles. More remarkably, the human genomic gene amplification targeting glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene was accomplished rapidly in 3.6 min with 40 cycles.</abstract><cop>United States</cop><pub>Springer Nature B.V</pub><pmid>17505884</pmid><doi>10.1007/s10544-007-9078-y</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1387-2176
ispartof Biomedical microdevices, 2007-10, Vol.9 (5), p.695-702
issn 1387-2176
1572-8781
language eng
recordid cdi_proquest_miscellaneous_743623293
source MEDLINE; SpringerLink Journals
subjects Base Pairing
Chemical reactors
DNA - genetics
DNA, Mitochondrial - genetics
Equipment Design
Genes
Glyceraldehyde-3-Phosphate Dehydrogenases - genetics
Humans
Magnetics
Magnetism
Microfluidic Analytical Techniques - instrumentation
Microfluidic Analytical Techniques - methods
Polymerase Chain Reaction - instrumentation
Polymerase Chain Reaction - methods
Proteins
Scientific apparatus & instruments
Temperature
Time Factors
title A simple device using magnetic transportation for droplet-based PCR
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T05%3A50%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20simple%20device%20using%20magnetic%20transportation%20for%20droplet-based%20PCR&rft.jtitle=Biomedical%20microdevices&rft.au=Ohashi,%20Tetsuo&rft.date=2007-10&rft.volume=9&rft.issue=5&rft.spage=695&rft.epage=702&rft.pages=695-702&rft.issn=1387-2176&rft.eissn=1572-8781&rft.coden=BMICFC&rft_id=info:doi/10.1007/s10544-007-9078-y&rft_dat=%3Cproquest_pubme%3E743623293%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=212146598&rft_id=info:pmid/17505884&rfr_iscdi=true