A parallel interior point decomposition algorithm forblock angular semidefinite programs

We present a two phase interior point decomposition framework for solving semidefinite (SDP) relaxations of sparse maxcut, stable set, and box constrained quadratic programs. In phase1, we suitably modify the matrix completion scheme of Fukuda et al. (SIAM J. Optim. 11:647-674, 2000) to preprocess a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational optimization and applications 2010-05, Vol.46 (1), p.1-29
1. Verfasser: Sivaramakrishnan, Kartik Krishnan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 29
container_issue 1
container_start_page 1
container_title Computational optimization and applications
container_volume 46
creator Sivaramakrishnan, Kartik Krishnan
description We present a two phase interior point decomposition framework for solving semidefinite (SDP) relaxations of sparse maxcut, stable set, and box constrained quadratic programs. In phase1, we suitably modify the matrix completion scheme of Fukuda et al. (SIAM J. Optim. 11:647-674, 2000) to preprocess an existing SDP into an equivalent SDP in the block-angular form. In phase 2, we solve the resulting block-angular SDP using a regularized interior point decomposition algorithm, in an iterative fashion between a master problem (a quadratic program); and decomposed and distributed subproblems (smaller SDPs) in a parallel and distributed high performance computing environment. We compare our MPI (Message Passing Interface) implementation of the decomposition algorithm on the distributed Henry2 cluster with the OpenMP version of CSDP (Borchers and Young in Comput. Optim. Appl. 37:355-369, 2007) on the IBM Power5 shared memory system at NC State University. Our computational results indicate that the decomposition algorithm (a)solves large SDPs to 2-3 digits of accuracy where CSDP runs out of memory; (b)returns competitive solution times with the OpenMP version of CSDP, and (c)attains a good parallel scalability. Comparing our results with Fujisawa et al. (Optim. Methods Softw. 21:17-39, 2006), we also show that a suitable modification of the matrix completion scheme can be used in the solution of larger SDPs than was previously possible.
doi_str_mv 10.1007/s10589-008-9187-4
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_743617624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743617624</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_7436176243</originalsourceid><addsrcrecordid>eNqNyj1OxDAQQGEXILH8HIBuOirDOAlxUiIE4gAU261MdhIMY0_wOPdnCw5A9V7xGXPr8N4h-gd1-DiMFnGwoxu87c7MDsemtz1ie2EuVb8QcfRtszP7J1hDCczEEHOlEqXAKqeFI02SVtFYo2QIvEiJ9TPBLOWDZfqGkJeNQwGlFI80xxwrwVpkKSHptTmfAyvd_PXK3L2-vD-_2RP42UjrIUWdiDlkkk0Pvmt75_uma_8vfwHaB0uy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>743617624</pqid></control><display><type>article</type><title>A parallel interior point decomposition algorithm forblock angular semidefinite programs</title><source>SpringerLink Journals</source><source>Business Source Complete</source><creator>Sivaramakrishnan, Kartik Krishnan</creator><creatorcontrib>Sivaramakrishnan, Kartik Krishnan</creatorcontrib><description>We present a two phase interior point decomposition framework for solving semidefinite (SDP) relaxations of sparse maxcut, stable set, and box constrained quadratic programs. In phase1, we suitably modify the matrix completion scheme of Fukuda et al. (SIAM J. Optim. 11:647-674, 2000) to preprocess an existing SDP into an equivalent SDP in the block-angular form. In phase 2, we solve the resulting block-angular SDP using a regularized interior point decomposition algorithm, in an iterative fashion between a master problem (a quadratic program); and decomposed and distributed subproblems (smaller SDPs) in a parallel and distributed high performance computing environment. We compare our MPI (Message Passing Interface) implementation of the decomposition algorithm on the distributed Henry2 cluster with the OpenMP version of CSDP (Borchers and Young in Comput. Optim. Appl. 37:355-369, 2007) on the IBM Power5 shared memory system at NC State University. Our computational results indicate that the decomposition algorithm (a)solves large SDPs to 2-3 digits of accuracy where CSDP runs out of memory; (b)returns competitive solution times with the OpenMP version of CSDP, and (c)attains a good parallel scalability. Comparing our results with Fujisawa et al. (Optim. Methods Softw. 21:17-39, 2006), we also show that a suitable modification of the matrix completion scheme can be used in the solution of larger SDPs than was previously possible.</description><identifier>ISSN: 0926-6003</identifier><identifier>DOI: 10.1007/s10589-008-9187-4</identifier><language>eng</language><ispartof>Computational optimization and applications, 2010-05, Vol.46 (1), p.1-29</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Sivaramakrishnan, Kartik Krishnan</creatorcontrib><title>A parallel interior point decomposition algorithm forblock angular semidefinite programs</title><title>Computational optimization and applications</title><description>We present a two phase interior point decomposition framework for solving semidefinite (SDP) relaxations of sparse maxcut, stable set, and box constrained quadratic programs. In phase1, we suitably modify the matrix completion scheme of Fukuda et al. (SIAM J. Optim. 11:647-674, 2000) to preprocess an existing SDP into an equivalent SDP in the block-angular form. In phase 2, we solve the resulting block-angular SDP using a regularized interior point decomposition algorithm, in an iterative fashion between a master problem (a quadratic program); and decomposed and distributed subproblems (smaller SDPs) in a parallel and distributed high performance computing environment. We compare our MPI (Message Passing Interface) implementation of the decomposition algorithm on the distributed Henry2 cluster with the OpenMP version of CSDP (Borchers and Young in Comput. Optim. Appl. 37:355-369, 2007) on the IBM Power5 shared memory system at NC State University. Our computational results indicate that the decomposition algorithm (a)solves large SDPs to 2-3 digits of accuracy where CSDP runs out of memory; (b)returns competitive solution times with the OpenMP version of CSDP, and (c)attains a good parallel scalability. Comparing our results with Fujisawa et al. (Optim. Methods Softw. 21:17-39, 2006), we also show that a suitable modification of the matrix completion scheme can be used in the solution of larger SDPs than was previously possible.</description><issn>0926-6003</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNyj1OxDAQQGEXILH8HIBuOirDOAlxUiIE4gAU261MdhIMY0_wOPdnCw5A9V7xGXPr8N4h-gd1-DiMFnGwoxu87c7MDsemtz1ie2EuVb8QcfRtszP7J1hDCczEEHOlEqXAKqeFI02SVtFYo2QIvEiJ9TPBLOWDZfqGkJeNQwGlFI80xxwrwVpkKSHptTmfAyvd_PXK3L2-vD-_2RP42UjrIUWdiDlkkk0Pvmt75_uma_8vfwHaB0uy</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Sivaramakrishnan, Kartik Krishnan</creator><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100501</creationdate><title>A parallel interior point decomposition algorithm forblock angular semidefinite programs</title><author>Sivaramakrishnan, Kartik Krishnan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_7436176243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sivaramakrishnan, Kartik Krishnan</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational optimization and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sivaramakrishnan, Kartik Krishnan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A parallel interior point decomposition algorithm forblock angular semidefinite programs</atitle><jtitle>Computational optimization and applications</jtitle><date>2010-05-01</date><risdate>2010</risdate><volume>46</volume><issue>1</issue><spage>1</spage><epage>29</epage><pages>1-29</pages><issn>0926-6003</issn><abstract>We present a two phase interior point decomposition framework for solving semidefinite (SDP) relaxations of sparse maxcut, stable set, and box constrained quadratic programs. In phase1, we suitably modify the matrix completion scheme of Fukuda et al. (SIAM J. Optim. 11:647-674, 2000) to preprocess an existing SDP into an equivalent SDP in the block-angular form. In phase 2, we solve the resulting block-angular SDP using a regularized interior point decomposition algorithm, in an iterative fashion between a master problem (a quadratic program); and decomposed and distributed subproblems (smaller SDPs) in a parallel and distributed high performance computing environment. We compare our MPI (Message Passing Interface) implementation of the decomposition algorithm on the distributed Henry2 cluster with the OpenMP version of CSDP (Borchers and Young in Comput. Optim. Appl. 37:355-369, 2007) on the IBM Power5 shared memory system at NC State University. Our computational results indicate that the decomposition algorithm (a)solves large SDPs to 2-3 digits of accuracy where CSDP runs out of memory; (b)returns competitive solution times with the OpenMP version of CSDP, and (c)attains a good parallel scalability. Comparing our results with Fujisawa et al. (Optim. Methods Softw. 21:17-39, 2006), we also show that a suitable modification of the matrix completion scheme can be used in the solution of larger SDPs than was previously possible.</abstract><doi>10.1007/s10589-008-9187-4</doi></addata></record>
fulltext fulltext
identifier ISSN: 0926-6003
ispartof Computational optimization and applications, 2010-05, Vol.46 (1), p.1-29
issn 0926-6003
language eng
recordid cdi_proquest_miscellaneous_743617624
source SpringerLink Journals; Business Source Complete
title A parallel interior point decomposition algorithm forblock angular semidefinite programs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A23%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20parallel%20interior%20point%20decomposition%20algorithm%20forblock%20angular%20semidefinite%20programs&rft.jtitle=Computational%20optimization%20and%20applications&rft.au=Sivaramakrishnan,%20Kartik%20Krishnan&rft.date=2010-05-01&rft.volume=46&rft.issue=1&rft.spage=1&rft.epage=29&rft.pages=1-29&rft.issn=0926-6003&rft_id=info:doi/10.1007/s10589-008-9187-4&rft_dat=%3Cproquest%3E743617624%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=743617624&rft_id=info:pmid/&rfr_iscdi=true