An Inscribing Model for Random Polytopes

For convex bodies K with boundary in ℝ d , we explore random polytopes with vertices chosen along the boundary of K . In particular, we determine asymptotic properties of the volume of these random polytopes. We provide results concerning the variance and higher moments of this functional, as well a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete & computational geometry 2008-03, Vol.39 (1-3), p.469-499
Hauptverfasser: Richardson, Ross M., Vu, Van H., Wu, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 499
container_issue 1-3
container_start_page 469
container_title Discrete & computational geometry
container_volume 39
creator Richardson, Ross M.
Vu, Van H.
Wu, Lei
description For convex bodies K with boundary in ℝ d , we explore random polytopes with vertices chosen along the boundary of K . In particular, we determine asymptotic properties of the volume of these random polytopes. We provide results concerning the variance and higher moments of this functional, as well as an analogous central limit theorem.
doi_str_mv 10.1007/s00454-007-9012-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743611236</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1485666811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-1514cb86395db338000f914cd3b05701951c7a55d385cbc25c794c8bbdf66113</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwNviRS_RzObf5liK1UJFkd7DJpstW7ZJTdpDv71Z1oMInuYx_N6b4SF0C-QRCJFPiRDGGc4SKwIlpmdoAoyWmDDGztGEgFSYUyku0VVKW5JxRaoJepj5YumTjZ3p_KZ4C43rizbE4rP2TdgVH6E_HcLepWt00dZ9cjc_c4rWi-f1_BWv3l-W89kKW6rIAQMHZk0lqOKNobTKh1qVVw01hEsCioOVNecNrbg1tuRWKmYrY5pWCAA6Rfdj7D6Gr6NLB73rknV9X3sXjklLRjNWUpHJuz_kNhyjz79pUELmNgTNEIyQjSGl6Fq9j92ujicNRA_F6bE4PcihOD14ytGTMus3Lv4K_tf0DZg-bSY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196745463</pqid></control><display><type>article</type><title>An Inscribing Model for Random Polytopes</title><source>SpringerNature Journals</source><creator>Richardson, Ross M. ; Vu, Van H. ; Wu, Lei</creator><creatorcontrib>Richardson, Ross M. ; Vu, Van H. ; Wu, Lei</creatorcontrib><description>For convex bodies K with boundary in ℝ d , we explore random polytopes with vertices chosen along the boundary of K . In particular, we determine asymptotic properties of the volume of these random polytopes. We provide results concerning the variance and higher moments of this functional, as well as an analogous central limit theorem.</description><identifier>ISSN: 0179-5376</identifier><identifier>EISSN: 1432-0444</identifier><identifier>DOI: 10.1007/s00454-007-9012-3</identifier><identifier>CODEN: DCGEER</identifier><language>eng</language><publisher>New York: Springer-Verlag</publisher><subject>Combinatorics ; Computational Mathematics and Numerical Analysis ; Geometry ; Mathematics ; Mathematics and Statistics ; Theorems</subject><ispartof>Discrete &amp; computational geometry, 2008-03, Vol.39 (1-3), p.469-499</ispartof><rights>Springer Science+Business Media, LLC 2007</rights><rights>Springer Science+Business Media, LLC 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-1514cb86395db338000f914cd3b05701951c7a55d385cbc25c794c8bbdf66113</citedby><cites>FETCH-LOGICAL-c390t-1514cb86395db338000f914cd3b05701951c7a55d385cbc25c794c8bbdf66113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00454-007-9012-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00454-007-9012-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Richardson, Ross M.</creatorcontrib><creatorcontrib>Vu, Van H.</creatorcontrib><creatorcontrib>Wu, Lei</creatorcontrib><title>An Inscribing Model for Random Polytopes</title><title>Discrete &amp; computational geometry</title><addtitle>Discrete Comput Geom</addtitle><description>For convex bodies K with boundary in ℝ d , we explore random polytopes with vertices chosen along the boundary of K . In particular, we determine asymptotic properties of the volume of these random polytopes. We provide results concerning the variance and higher moments of this functional, as well as an analogous central limit theorem.</description><subject>Combinatorics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Theorems</subject><issn>0179-5376</issn><issn>1432-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE9LAzEQxYMoWKsfwNviRS_RzObf5liK1UJFkd7DJpstW7ZJTdpDv71Z1oMInuYx_N6b4SF0C-QRCJFPiRDGGc4SKwIlpmdoAoyWmDDGztGEgFSYUyku0VVKW5JxRaoJepj5YumTjZ3p_KZ4C43rizbE4rP2TdgVH6E_HcLepWt00dZ9cjc_c4rWi-f1_BWv3l-W89kKW6rIAQMHZk0lqOKNobTKh1qVVw01hEsCioOVNecNrbg1tuRWKmYrY5pWCAA6Rfdj7D6Gr6NLB73rknV9X3sXjklLRjNWUpHJuz_kNhyjz79pUELmNgTNEIyQjSGl6Fq9j92ujicNRA_F6bE4PcihOD14ytGTMus3Lv4K_tf0DZg-bSY</recordid><startdate>20080301</startdate><enddate>20080301</enddate><creator>Richardson, Ross M.</creator><creator>Vu, Van H.</creator><creator>Wu, Lei</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20080301</creationdate><title>An Inscribing Model for Random Polytopes</title><author>Richardson, Ross M. ; Vu, Van H. ; Wu, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-1514cb86395db338000f914cd3b05701951c7a55d385cbc25c794c8bbdf66113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Combinatorics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Richardson, Ross M.</creatorcontrib><creatorcontrib>Vu, Van H.</creatorcontrib><creatorcontrib>Wu, Lei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Discrete &amp; computational geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Richardson, Ross M.</au><au>Vu, Van H.</au><au>Wu, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Inscribing Model for Random Polytopes</atitle><jtitle>Discrete &amp; computational geometry</jtitle><stitle>Discrete Comput Geom</stitle><date>2008-03-01</date><risdate>2008</risdate><volume>39</volume><issue>1-3</issue><spage>469</spage><epage>499</epage><pages>469-499</pages><issn>0179-5376</issn><eissn>1432-0444</eissn><coden>DCGEER</coden><abstract>For convex bodies K with boundary in ℝ d , we explore random polytopes with vertices chosen along the boundary of K . In particular, we determine asymptotic properties of the volume of these random polytopes. We provide results concerning the variance and higher moments of this functional, as well as an analogous central limit theorem.</abstract><cop>New York</cop><pub>Springer-Verlag</pub><doi>10.1007/s00454-007-9012-3</doi><tpages>31</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0179-5376
ispartof Discrete & computational geometry, 2008-03, Vol.39 (1-3), p.469-499
issn 0179-5376
1432-0444
language eng
recordid cdi_proquest_miscellaneous_743611236
source SpringerNature Journals
subjects Combinatorics
Computational Mathematics and Numerical Analysis
Geometry
Mathematics
Mathematics and Statistics
Theorems
title An Inscribing Model for Random Polytopes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A22%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Inscribing%20Model%20for%20Random%20Polytopes&rft.jtitle=Discrete%20&%20computational%20geometry&rft.au=Richardson,%20Ross%20M.&rft.date=2008-03-01&rft.volume=39&rft.issue=1-3&rft.spage=469&rft.epage=499&rft.pages=469-499&rft.issn=0179-5376&rft.eissn=1432-0444&rft.coden=DCGEER&rft_id=info:doi/10.1007/s00454-007-9012-3&rft_dat=%3Cproquest_cross%3E1485666811%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196745463&rft_id=info:pmid/&rfr_iscdi=true