Neuro-fuzzy Based Condition Prediction of Bearing Health

A reliable prognostic model is very useful for industries to forecast equipment behaviors. The aim of this research is to verify the effectiveness of the neuro-fuzzy model in predicting the health condition of bearings. Simulation and an experiment have been carried out to verify the model, with res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of vibration and control 2009-07, Vol.15 (7), p.1079-1091
Hauptverfasser: Zhao, Fagang, Chen, Jin, Guo, Lei, Li, Xinglin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1091
container_issue 7
container_start_page 1079
container_title Journal of vibration and control
container_volume 15
creator Zhao, Fagang
Chen, Jin
Guo, Lei
Li, Xinglin
description A reliable prognostic model is very useful for industries to forecast equipment behaviors. The aim of this research is to verify the effectiveness of the neuro-fuzzy model in predicting the health condition of bearings. Simulation and an experiment have been carried out to verify the model, with results showing that the neuro-fuzzy model is a reliable and robust forecasting tool, and more accurate than a radial basis function network. In the experiment, vibration data collected from the equipment is used to predict the future condition.
doi_str_mv 10.1177/1077546309102665
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743608331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1077546309102665</sage_id><sourcerecordid>1764135311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-bb3f307970f0a946febd895618a03cca7e154144d2123348e7708a751bdadb3f3</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EEqWwM0YsTIG72LGdkVaUIlXAAHPkxJeSKo2LnQztryelSEiVmO5J73vvTsfYNcIdolL3CEqlQnLIEBIp0xM2QiUwTjItTwc92PHeP2cXIawAQAiEEdMv1HsXV_1ut40mJpCNpq61dVe7NnrzZOvyR7oqmpDxdbuM5mSa7vOSnVWmCXT1O8fsY_b4Pp3Hi9en5-nDIi65gC4uCl5xUJmCCkwmZEWF1VkqURvgZWkUYSpQCJtgwrnQpBRoo1IsrLH77JjdHno33n31FLp8XYeSmsa05PqQK8ElaM5xIG-OyJXrfTsclycJwrBTZgMEB6j0LgRPVb7x9dr4bY6Q7x-ZHz9yiMSHSDBL-uv8l_8GxtdwEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>221056169</pqid></control><display><type>article</type><title>Neuro-fuzzy Based Condition Prediction of Bearing Health</title><source>SAGE Complete</source><creator>Zhao, Fagang ; Chen, Jin ; Guo, Lei ; Li, Xinglin</creator><creatorcontrib>Zhao, Fagang ; Chen, Jin ; Guo, Lei ; Li, Xinglin</creatorcontrib><description>A reliable prognostic model is very useful for industries to forecast equipment behaviors. The aim of this research is to verify the effectiveness of the neuro-fuzzy model in predicting the health condition of bearings. Simulation and an experiment have been carried out to verify the model, with results showing that the neuro-fuzzy model is a reliable and robust forecasting tool, and more accurate than a radial basis function network. In the experiment, vibration data collected from the equipment is used to predict the future condition.</description><identifier>ISSN: 1077-5463</identifier><identifier>EISSN: 1741-2986</identifier><identifier>DOI: 10.1177/1077546309102665</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Bearings ; Fuzzy logic ; Industrial equipment ; Simulation ; Vibration</subject><ispartof>Journal of vibration and control, 2009-07, Vol.15 (7), p.1079-1091</ispartof><rights>Copyright SAGE PUBLICATIONS, INC. Jul 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-bb3f307970f0a946febd895618a03cca7e154144d2123348e7708a751bdadb3f3</citedby><cites>FETCH-LOGICAL-c340t-bb3f307970f0a946febd895618a03cca7e154144d2123348e7708a751bdadb3f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1077546309102665$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1077546309102665$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids></links><search><creatorcontrib>Zhao, Fagang</creatorcontrib><creatorcontrib>Chen, Jin</creatorcontrib><creatorcontrib>Guo, Lei</creatorcontrib><creatorcontrib>Li, Xinglin</creatorcontrib><title>Neuro-fuzzy Based Condition Prediction of Bearing Health</title><title>Journal of vibration and control</title><description>A reliable prognostic model is very useful for industries to forecast equipment behaviors. The aim of this research is to verify the effectiveness of the neuro-fuzzy model in predicting the health condition of bearings. Simulation and an experiment have been carried out to verify the model, with results showing that the neuro-fuzzy model is a reliable and robust forecasting tool, and more accurate than a radial basis function network. In the experiment, vibration data collected from the equipment is used to predict the future condition.</description><subject>Bearings</subject><subject>Fuzzy logic</subject><subject>Industrial equipment</subject><subject>Simulation</subject><subject>Vibration</subject><issn>1077-5463</issn><issn>1741-2986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAQhS0EEqWwM0YsTIG72LGdkVaUIlXAAHPkxJeSKo2LnQztryelSEiVmO5J73vvTsfYNcIdolL3CEqlQnLIEBIp0xM2QiUwTjItTwc92PHeP2cXIawAQAiEEdMv1HsXV_1ut40mJpCNpq61dVe7NnrzZOvyR7oqmpDxdbuM5mSa7vOSnVWmCXT1O8fsY_b4Pp3Hi9en5-nDIi65gC4uCl5xUJmCCkwmZEWF1VkqURvgZWkUYSpQCJtgwrnQpBRoo1IsrLH77JjdHno33n31FLp8XYeSmsa05PqQK8ElaM5xIG-OyJXrfTsclycJwrBTZgMEB6j0LgRPVb7x9dr4bY6Q7x-ZHz9yiMSHSDBL-uv8l_8GxtdwEw</recordid><startdate>200907</startdate><enddate>200907</enddate><creator>Zhao, Fagang</creator><creator>Chen, Jin</creator><creator>Guo, Lei</creator><creator>Li, Xinglin</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200907</creationdate><title>Neuro-fuzzy Based Condition Prediction of Bearing Health</title><author>Zhao, Fagang ; Chen, Jin ; Guo, Lei ; Li, Xinglin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-bb3f307970f0a946febd895618a03cca7e154144d2123348e7708a751bdadb3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Bearings</topic><topic>Fuzzy logic</topic><topic>Industrial equipment</topic><topic>Simulation</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Fagang</creatorcontrib><creatorcontrib>Chen, Jin</creatorcontrib><creatorcontrib>Guo, Lei</creatorcontrib><creatorcontrib>Li, Xinglin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of vibration and control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Fagang</au><au>Chen, Jin</au><au>Guo, Lei</au><au>Li, Xinglin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neuro-fuzzy Based Condition Prediction of Bearing Health</atitle><jtitle>Journal of vibration and control</jtitle><date>2009-07</date><risdate>2009</risdate><volume>15</volume><issue>7</issue><spage>1079</spage><epage>1091</epage><pages>1079-1091</pages><issn>1077-5463</issn><eissn>1741-2986</eissn><abstract>A reliable prognostic model is very useful for industries to forecast equipment behaviors. The aim of this research is to verify the effectiveness of the neuro-fuzzy model in predicting the health condition of bearings. Simulation and an experiment have been carried out to verify the model, with results showing that the neuro-fuzzy model is a reliable and robust forecasting tool, and more accurate than a radial basis function network. In the experiment, vibration data collected from the equipment is used to predict the future condition.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1077546309102665</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1077-5463
ispartof Journal of vibration and control, 2009-07, Vol.15 (7), p.1079-1091
issn 1077-5463
1741-2986
language eng
recordid cdi_proquest_miscellaneous_743608331
source SAGE Complete
subjects Bearings
Fuzzy logic
Industrial equipment
Simulation
Vibration
title Neuro-fuzzy Based Condition Prediction of Bearing Health
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T13%3A22%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neuro-fuzzy%20Based%20Condition%20Prediction%20of%20Bearing%20Health&rft.jtitle=Journal%20of%20vibration%20and%20control&rft.au=Zhao,%20Fagang&rft.date=2009-07&rft.volume=15&rft.issue=7&rft.spage=1079&rft.epage=1091&rft.pages=1079-1091&rft.issn=1077-5463&rft.eissn=1741-2986&rft_id=info:doi/10.1177/1077546309102665&rft_dat=%3Cproquest_cross%3E1764135311%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=221056169&rft_id=info:pmid/&rft_sage_id=10.1177_1077546309102665&rfr_iscdi=true