Maximally homogeneous para-CR manifolds

We define the notion of a (weak) almost para-CR structure on a manifold M as a distribution HM C TM together with a field K E I(End(HM)) of involutive endomorphisms of HM. If K satisfies integrability conditions, then (HM, K) is called a (weak) para-CR structure. Under some regularity conditions, an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of global analysis and geometry 2006-08, Vol.30 (1), p.1-27
Hauptverfasser: Alekseevsky, D V, Medori, C, Tomassini, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27
container_issue 1
container_start_page 1
container_title Annals of global analysis and geometry
container_volume 30
creator Alekseevsky, D V
Medori, C
Tomassini, A
description We define the notion of a (weak) almost para-CR structure on a manifold M as a distribution HM C TM together with a field K E I(End(HM)) of involutive endomorphisms of HM. If K satisfies integrability conditions, then (HM, K) is called a (weak) para-CR structure. Under some regularity conditions, an almost para-CR structure can be identified with a Tanaka structure. The notion of maximally homogeneous almost para-CR structure of a semisimple type is defined. A classification of such maximally homogeneous almost para-CR structures is given in terms of appropriate gradations of real semisimple Lie algebras. All such maximally homogeneous structures of depth two (which correspond to depth two gradations) are listed and the integrability conditions are verified. [PUBLICATION ABSTRACT]
doi_str_mv 10.1007/s10455-005-9009-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743604951</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743604951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c304t-4c0d54251f8cd817a981e53af3cacd519a869384f11bde61d3510221152e7d783</originalsourceid><addsrcrecordid>eNpdkE1LxDAURYMoOI7-AHeDm1lF38tH0y6l6CiMCKLgLsQk1Q5tU5MpOP_eztSVq8eFw-W-Q8glwjUCqJuEIKSkAJIWAAXFIzJDqdiYMjgmM2CcUQXi_ZScpbSBEeSIM7J8Mj91a5pmt_gKbfj0nQ9DWvQmGlq-LFrT1VVoXDonJ5Vpkr_4u3Pydn_3Wj7Q9fPqsbxdU8tBbKmw4KRgEqvcuhyVKXL0kpuKW2OdxMLkWcFzUSF-OJ-h4xKBMUTJvHIq53OynHr7GL4Hn7a6rZP1TWMOw7QSPANRSBzJq3_kJgyxG8dphoIrrg51OEE2hpSir3Qfx3fjTiPovTg9idOjD70Xp5H_AjfaXhs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214373778</pqid></control><display><type>article</type><title>Maximally homogeneous para-CR manifolds</title><source>SpringerLink Journals - AutoHoldings</source><creator>Alekseevsky, D V ; Medori, C ; Tomassini, A</creator><creatorcontrib>Alekseevsky, D V ; Medori, C ; Tomassini, A</creatorcontrib><description>We define the notion of a (weak) almost para-CR structure on a manifold M as a distribution HM C TM together with a field K E I(End(HM)) of involutive endomorphisms of HM. If K satisfies integrability conditions, then (HM, K) is called a (weak) para-CR structure. Under some regularity conditions, an almost para-CR structure can be identified with a Tanaka structure. The notion of maximally homogeneous almost para-CR structure of a semisimple type is defined. A classification of such maximally homogeneous almost para-CR structures is given in terms of appropriate gradations of real semisimple Lie algebras. All such maximally homogeneous structures of depth two (which correspond to depth two gradations) are listed and the integrability conditions are verified. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0232-704X</identifier><identifier>EISSN: 1572-9060</identifier><identifier>DOI: 10.1007/s10455-005-9009-1</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Algebra ; Classification ; Eigenvalues ; Mathematical models ; Studies</subject><ispartof>Annals of global analysis and geometry, 2006-08, Vol.30 (1), p.1-27</ispartof><rights>Springer Science + Business Media B.V. 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c304t-4c0d54251f8cd817a981e53af3cacd519a869384f11bde61d3510221152e7d783</citedby><cites>FETCH-LOGICAL-c304t-4c0d54251f8cd817a981e53af3cacd519a869384f11bde61d3510221152e7d783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Alekseevsky, D V</creatorcontrib><creatorcontrib>Medori, C</creatorcontrib><creatorcontrib>Tomassini, A</creatorcontrib><title>Maximally homogeneous para-CR manifolds</title><title>Annals of global analysis and geometry</title><description>We define the notion of a (weak) almost para-CR structure on a manifold M as a distribution HM C TM together with a field K E I(End(HM)) of involutive endomorphisms of HM. If K satisfies integrability conditions, then (HM, K) is called a (weak) para-CR structure. Under some regularity conditions, an almost para-CR structure can be identified with a Tanaka structure. The notion of maximally homogeneous almost para-CR structure of a semisimple type is defined. A classification of such maximally homogeneous almost para-CR structures is given in terms of appropriate gradations of real semisimple Lie algebras. All such maximally homogeneous structures of depth two (which correspond to depth two gradations) are listed and the integrability conditions are verified. [PUBLICATION ABSTRACT]</description><subject>Algebra</subject><subject>Classification</subject><subject>Eigenvalues</subject><subject>Mathematical models</subject><subject>Studies</subject><issn>0232-704X</issn><issn>1572-9060</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkE1LxDAURYMoOI7-AHeDm1lF38tH0y6l6CiMCKLgLsQk1Q5tU5MpOP_eztSVq8eFw-W-Q8glwjUCqJuEIKSkAJIWAAXFIzJDqdiYMjgmM2CcUQXi_ZScpbSBEeSIM7J8Mj91a5pmt_gKbfj0nQ9DWvQmGlq-LFrT1VVoXDonJ5Vpkr_4u3Pydn_3Wj7Q9fPqsbxdU8tBbKmw4KRgEqvcuhyVKXL0kpuKW2OdxMLkWcFzUSF-OJ-h4xKBMUTJvHIq53OynHr7GL4Hn7a6rZP1TWMOw7QSPANRSBzJq3_kJgyxG8dphoIrrg51OEE2hpSir3Qfx3fjTiPovTg9idOjD70Xp5H_AjfaXhs</recordid><startdate>20060801</startdate><enddate>20060801</enddate><creator>Alekseevsky, D V</creator><creator>Medori, C</creator><creator>Tomassini, A</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20060801</creationdate><title>Maximally homogeneous para-CR manifolds</title><author>Alekseevsky, D V ; Medori, C ; Tomassini, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c304t-4c0d54251f8cd817a981e53af3cacd519a869384f11bde61d3510221152e7d783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algebra</topic><topic>Classification</topic><topic>Eigenvalues</topic><topic>Mathematical models</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alekseevsky, D V</creatorcontrib><creatorcontrib>Medori, C</creatorcontrib><creatorcontrib>Tomassini, A</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Annals of global analysis and geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alekseevsky, D V</au><au>Medori, C</au><au>Tomassini, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximally homogeneous para-CR manifolds</atitle><jtitle>Annals of global analysis and geometry</jtitle><date>2006-08-01</date><risdate>2006</risdate><volume>30</volume><issue>1</issue><spage>1</spage><epage>27</epage><pages>1-27</pages><issn>0232-704X</issn><eissn>1572-9060</eissn><abstract>We define the notion of a (weak) almost para-CR structure on a manifold M as a distribution HM C TM together with a field K E I(End(HM)) of involutive endomorphisms of HM. If K satisfies integrability conditions, then (HM, K) is called a (weak) para-CR structure. Under some regularity conditions, an almost para-CR structure can be identified with a Tanaka structure. The notion of maximally homogeneous almost para-CR structure of a semisimple type is defined. A classification of such maximally homogeneous almost para-CR structures is given in terms of appropriate gradations of real semisimple Lie algebras. All such maximally homogeneous structures of depth two (which correspond to depth two gradations) are listed and the integrability conditions are verified. [PUBLICATION ABSTRACT]</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1007/s10455-005-9009-1</doi><tpages>27</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0232-704X
ispartof Annals of global analysis and geometry, 2006-08, Vol.30 (1), p.1-27
issn 0232-704X
1572-9060
language eng
recordid cdi_proquest_miscellaneous_743604951
source SpringerLink Journals - AutoHoldings
subjects Algebra
Classification
Eigenvalues
Mathematical models
Studies
title Maximally homogeneous para-CR manifolds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T04%3A33%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximally%20homogeneous%20para-CR%20manifolds&rft.jtitle=Annals%20of%20global%20analysis%20and%20geometry&rft.au=Alekseevsky,%20D%20V&rft.date=2006-08-01&rft.volume=30&rft.issue=1&rft.spage=1&rft.epage=27&rft.pages=1-27&rft.issn=0232-704X&rft.eissn=1572-9060&rft_id=info:doi/10.1007/s10455-005-9009-1&rft_dat=%3Cproquest_cross%3E743604951%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=214373778&rft_id=info:pmid/&rfr_iscdi=true