Maximally homogeneous para-CR manifolds
We define the notion of a (weak) almost para-CR structure on a manifold M as a distribution HM C TM together with a field K E I(End(HM)) of involutive endomorphisms of HM. If K satisfies integrability conditions, then (HM, K) is called a (weak) para-CR structure. Under some regularity conditions, an...
Gespeichert in:
Veröffentlicht in: | Annals of global analysis and geometry 2006-08, Vol.30 (1), p.1-27 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We define the notion of a (weak) almost para-CR structure on a manifold M as a distribution HM C TM together with a field K E I(End(HM)) of involutive endomorphisms of HM. If K satisfies integrability conditions, then (HM, K) is called a (weak) para-CR structure. Under some regularity conditions, an almost para-CR structure can be identified with a Tanaka structure. The notion of maximally homogeneous almost para-CR structure of a semisimple type is defined. A classification of such maximally homogeneous almost para-CR structures is given in terms of appropriate gradations of real semisimple Lie algebras. All such maximally homogeneous structures of depth two (which correspond to depth two gradations) are listed and the integrability conditions are verified. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0232-704X 1572-9060 |
DOI: | 10.1007/s10455-005-9009-1 |