Multigrid preconditioned conjugate-gradient solver for mixed finite-element method
The mixed finite-element approximation to a second-order elliptic PDE results in a saddle-point problem and leads to an indefinite linear system of equations. The mixed system of equations can be transformed into coupled symmetric positive-definite matrix equations, or a Schur complement problem, us...
Gespeichert in:
Veröffentlicht in: | Computational geosciences 2010-03, Vol.14 (2), p.289-299 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 299 |
---|---|
container_issue | 2 |
container_start_page | 289 |
container_title | Computational geosciences |
container_volume | 14 |
creator | Wilson, John David Naff, Richard L. |
description | The mixed finite-element approximation to a second-order elliptic PDE results in a saddle-point problem and leads to an indefinite linear system of equations. The mixed system of equations can be transformed into coupled symmetric positive-definite matrix equations, or a Schur complement problem, using block Gauss elimination. A preconditioned conjugate-gradient algorithm is used for solving the Schur complement problem. The mixed finite-element method is closely related to the cell-centered finite difference scheme for solving second-order elliptic problems with variable coefficients. For the cell-centered finite difference scheme, a simple multigrid algorithm can be defined and used as a preconditioner. For distorted grids, an additional iteration is needed. Nested iteration with a multigrid preconditioned conjugate gradient inner iteration results in an effective numerical solution technique for the mixed system of linear equations arising from a discretization on distorted grids. Numerical results show that the preconditioned conjugate-gradient inner iteration is robust with respect to grid size and variability in the hydraulic conductivity tensor. |
doi_str_mv | 10.1007/s10596-009-9152-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743600250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1964615971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-88588baf03a32160f4e9a395bf1bdc2b1e64a879a0fd54c720b00e70196d44063</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG_Fi6foJGmb5iiLX6AIoueQttOapW3WpBXdX2_KCoLgaQbmeV-Gh5BTBhcMQF4GBpnKKYCiimWcbvfIgmVSUJYqtR_3lAONiDwkRyGsIYJSsAV5fpy60bbe1snGY-WG2o7WDVgncV9PrRmRtt7UFocxCa77QJ80zie9_YxMYwcbAeywn-89jm-uPiYHjekCnvzMJXm9uX5Z3dGHp9v71dUDrYSCkRZFVhSlaUAYwVkOTYrKCJWVDSvripcM89QUUhlo6iytJIcSACUwlddpCrlYkvNd78a79wnDqHsbKuw6M6CbgpapyAF4BpE8-0Ou3eSH-JzmkBUSimKuYzuo8i4Ej43eeNsb_6UZ6Nmx3jnWUZ2eHettzPBdJkR2aNH_Fv8f-gZLcH_Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205870886</pqid></control><display><type>article</type><title>Multigrid preconditioned conjugate-gradient solver for mixed finite-element method</title><source>SpringerLink Journals</source><creator>Wilson, John David ; Naff, Richard L.</creator><creatorcontrib>Wilson, John David ; Naff, Richard L.</creatorcontrib><description>The mixed finite-element approximation to a second-order elliptic PDE results in a saddle-point problem and leads to an indefinite linear system of equations. The mixed system of equations can be transformed into coupled symmetric positive-definite matrix equations, or a Schur complement problem, using block Gauss elimination. A preconditioned conjugate-gradient algorithm is used for solving the Schur complement problem. The mixed finite-element method is closely related to the cell-centered finite difference scheme for solving second-order elliptic problems with variable coefficients. For the cell-centered finite difference scheme, a simple multigrid algorithm can be defined and used as a preconditioner. For distorted grids, an additional iteration is needed. Nested iteration with a multigrid preconditioned conjugate gradient inner iteration results in an effective numerical solution technique for the mixed system of linear equations arising from a discretization on distorted grids. Numerical results show that the preconditioned conjugate-gradient inner iteration is robust with respect to grid size and variability in the hydraulic conductivity tensor.</description><identifier>ISSN: 1420-0597</identifier><identifier>EISSN: 1573-1499</identifier><identifier>DOI: 10.1007/s10596-009-9152-z</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Earth and Environmental Science ; Earth Sciences ; Finite element analysis ; Fluid mechanics ; Geotechnical Engineering & Applied Earth Sciences ; Hydraulics ; Hydrogeology ; Mathematical Modeling and Industrial Mathematics ; Original Paper ; Soil Science & Conservation</subject><ispartof>Computational geosciences, 2010-03, Vol.14 (2), p.289-299</ispartof><rights>The Author(s) 2009</rights><rights>Springer Science+Business Media B.V. 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-88588baf03a32160f4e9a395bf1bdc2b1e64a879a0fd54c720b00e70196d44063</citedby><cites>FETCH-LOGICAL-c390t-88588baf03a32160f4e9a395bf1bdc2b1e64a879a0fd54c720b00e70196d44063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10596-009-9152-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10596-009-9152-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Wilson, John David</creatorcontrib><creatorcontrib>Naff, Richard L.</creatorcontrib><title>Multigrid preconditioned conjugate-gradient solver for mixed finite-element method</title><title>Computational geosciences</title><addtitle>Comput Geosci</addtitle><description>The mixed finite-element approximation to a second-order elliptic PDE results in a saddle-point problem and leads to an indefinite linear system of equations. The mixed system of equations can be transformed into coupled symmetric positive-definite matrix equations, or a Schur complement problem, using block Gauss elimination. A preconditioned conjugate-gradient algorithm is used for solving the Schur complement problem. The mixed finite-element method is closely related to the cell-centered finite difference scheme for solving second-order elliptic problems with variable coefficients. For the cell-centered finite difference scheme, a simple multigrid algorithm can be defined and used as a preconditioner. For distorted grids, an additional iteration is needed. Nested iteration with a multigrid preconditioned conjugate gradient inner iteration results in an effective numerical solution technique for the mixed system of linear equations arising from a discretization on distorted grids. Numerical results show that the preconditioned conjugate-gradient inner iteration is robust with respect to grid size and variability in the hydraulic conductivity tensor.</description><subject>Algorithms</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Finite element analysis</subject><subject>Fluid mechanics</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Hydraulics</subject><subject>Hydrogeology</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Original Paper</subject><subject>Soil Science & Conservation</subject><issn>1420-0597</issn><issn>1573-1499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LxDAQhoMouK7-AG_Fi6foJGmb5iiLX6AIoueQttOapW3WpBXdX2_KCoLgaQbmeV-Gh5BTBhcMQF4GBpnKKYCiimWcbvfIgmVSUJYqtR_3lAONiDwkRyGsIYJSsAV5fpy60bbe1snGY-WG2o7WDVgncV9PrRmRtt7UFocxCa77QJ80zie9_YxMYwcbAeywn-89jm-uPiYHjekCnvzMJXm9uX5Z3dGHp9v71dUDrYSCkRZFVhSlaUAYwVkOTYrKCJWVDSvripcM89QUUhlo6iytJIcSACUwlddpCrlYkvNd78a79wnDqHsbKuw6M6CbgpapyAF4BpE8-0Ou3eSH-JzmkBUSimKuYzuo8i4Ej43eeNsb_6UZ6Nmx3jnWUZ2eHettzPBdJkR2aNH_Fv8f-gZLcH_Y</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Wilson, John David</creator><creator>Naff, Richard L.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20100301</creationdate><title>Multigrid preconditioned conjugate-gradient solver for mixed finite-element method</title><author>Wilson, John David ; Naff, Richard L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-88588baf03a32160f4e9a395bf1bdc2b1e64a879a0fd54c720b00e70196d44063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Finite element analysis</topic><topic>Fluid mechanics</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Hydraulics</topic><topic>Hydrogeology</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Original Paper</topic><topic>Soil Science & Conservation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilson, John David</creatorcontrib><creatorcontrib>Naff, Richard L.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Computational geosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilson, John David</au><au>Naff, Richard L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multigrid preconditioned conjugate-gradient solver for mixed finite-element method</atitle><jtitle>Computational geosciences</jtitle><stitle>Comput Geosci</stitle><date>2010-03-01</date><risdate>2010</risdate><volume>14</volume><issue>2</issue><spage>289</spage><epage>299</epage><pages>289-299</pages><issn>1420-0597</issn><eissn>1573-1499</eissn><abstract>The mixed finite-element approximation to a second-order elliptic PDE results in a saddle-point problem and leads to an indefinite linear system of equations. The mixed system of equations can be transformed into coupled symmetric positive-definite matrix equations, or a Schur complement problem, using block Gauss elimination. A preconditioned conjugate-gradient algorithm is used for solving the Schur complement problem. The mixed finite-element method is closely related to the cell-centered finite difference scheme for solving second-order elliptic problems with variable coefficients. For the cell-centered finite difference scheme, a simple multigrid algorithm can be defined and used as a preconditioner. For distorted grids, an additional iteration is needed. Nested iteration with a multigrid preconditioned conjugate gradient inner iteration results in an effective numerical solution technique for the mixed system of linear equations arising from a discretization on distorted grids. Numerical results show that the preconditioned conjugate-gradient inner iteration is robust with respect to grid size and variability in the hydraulic conductivity tensor.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10596-009-9152-z</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1420-0597 |
ispartof | Computational geosciences, 2010-03, Vol.14 (2), p.289-299 |
issn | 1420-0597 1573-1499 |
language | eng |
recordid | cdi_proquest_miscellaneous_743600250 |
source | SpringerLink Journals |
subjects | Algorithms Earth and Environmental Science Earth Sciences Finite element analysis Fluid mechanics Geotechnical Engineering & Applied Earth Sciences Hydraulics Hydrogeology Mathematical Modeling and Industrial Mathematics Original Paper Soil Science & Conservation |
title | Multigrid preconditioned conjugate-gradient solver for mixed finite-element method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A02%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multigrid%20preconditioned%20conjugate-gradient%20solver%20for%20mixed%20finite-element%20method&rft.jtitle=Computational%20geosciences&rft.au=Wilson,%20John%20David&rft.date=2010-03-01&rft.volume=14&rft.issue=2&rft.spage=289&rft.epage=299&rft.pages=289-299&rft.issn=1420-0597&rft.eissn=1573-1499&rft_id=info:doi/10.1007/s10596-009-9152-z&rft_dat=%3Cproquest_cross%3E1964615971%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=205870886&rft_id=info:pmid/&rfr_iscdi=true |