Laser ablation of micropores for formation of artificial planar lipid bilayers
Artificial lipid bilayers are a powerful tool for studying synthetic or reconstituted ion channels. Key to forming these lipid bilayers is having a small aperture in a septum separating two solution chambers. Traditional methods of aperture generation involve manually punching the aperture into the...
Gespeichert in:
Veröffentlicht in: | Biomedical microdevices 2007-12, Vol.9 (6), p.863-868 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 868 |
---|---|
container_issue | 6 |
container_start_page | 863 |
container_title | Biomedical microdevices |
container_volume | 9 |
creator | O'Shaughnessy, Thomas J Hu, Jenny E Kulp, 3rd, John L Daly, Susan M Ligler, Frances S |
description | Artificial lipid bilayers are a powerful tool for studying synthetic or reconstituted ion channels. Key to forming these lipid bilayers is having a small aperture in a septum separating two solution chambers. Traditional methods of aperture generation involve manually punching the aperture into the septum. While these techniques work, they are difficult to implement reliably and do not produce consistently sized apertures. Presented here is a method of using a UV excimer laser with a nanosecond scale pulse width to laser ablate apertures from 4 to 105 microm in 20 microm thick polycarbonate films for use in artificial lipid bilayer experiments. The data demonstrate that the apertures produced by laser ablation are highly reproducible and can support both the formation of stable, long-lasting lipid bilayers as well as the recording of ion channels incorporated into the bilayers. |
doi_str_mv | 10.1007/s10544-007-9099-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743597662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743597662</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-2f94cadf79baf1c77fc73464d9287b08445b35b7cb3b519e832241f218bf21183</originalsourceid><addsrcrecordid>eNqFkUtLxDAUhYMojo7-ADdSXOiqmpt3ljL4gkE3ug5Jm0CGdlqTzmL-vS0zKLhQwk0O5Mvh3hyELgDfAsbyLgPmjJWjLDXWuhQH6AS4JKWSCg5HTZUsCUgxQ6c5rzAGLYQ4RjOQXDJO4QS9Lm32qbCusUPs1kUXijZWqeu75HMRujRV-31n0xBDrKJtir6xa5uKJvaxLlxs7NanfIaOgm2yP9-fc_Tx-PC-eC6Xb08vi_tlWTHOh5IEzSpbB6mdDVBJGSpJmWC1Jko6rBjjjnInK0cdB-0VJYRBIKDcuIGic3Sz8-1T97nxeTBtzJVvxp58t8lGMsq1FIKM5PWfpFCMChDiX5Bgrgmmk-PVL3DVbdJ6HNcQmBYIPEKwg8a_zDn5YPoUW5u2BrCZwjO78Mwkp_DM1MHl3njjWl__vNinRb8A8beTaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>212121160</pqid></control><display><type>article</type><title>Laser ablation of micropores for formation of artificial planar lipid bilayers</title><source>MEDLINE</source><source>SpringerLink</source><creator>O'Shaughnessy, Thomas J ; Hu, Jenny E ; Kulp, 3rd, John L ; Daly, Susan M ; Ligler, Frances S</creator><creatorcontrib>O'Shaughnessy, Thomas J ; Hu, Jenny E ; Kulp, 3rd, John L ; Daly, Susan M ; Ligler, Frances S</creatorcontrib><description>Artificial lipid bilayers are a powerful tool for studying synthetic or reconstituted ion channels. Key to forming these lipid bilayers is having a small aperture in a septum separating two solution chambers. Traditional methods of aperture generation involve manually punching the aperture into the septum. While these techniques work, they are difficult to implement reliably and do not produce consistently sized apertures. Presented here is a method of using a UV excimer laser with a nanosecond scale pulse width to laser ablate apertures from 4 to 105 microm in 20 microm thick polycarbonate films for use in artificial lipid bilayer experiments. The data demonstrate that the apertures produced by laser ablation are highly reproducible and can support both the formation of stable, long-lasting lipid bilayers as well as the recording of ion channels incorporated into the bilayers.</description><identifier>ISSN: 1387-2176</identifier><identifier>EISSN: 1572-8781</identifier><identifier>DOI: 10.1007/s10544-007-9099-6</identifier><identifier>PMID: 17574531</identifier><identifier>CODEN: BMICFC</identifier><language>eng</language><publisher>United States: Springer Nature B.V</publisher><subject>Biomimetic Materials - chemistry ; Biomimetic Materials - radiation effects ; Biotechnology ; Ions ; Lasers ; Lipid Bilayers - chemistry ; Lipid Bilayers - radiation effects ; Lipids ; Materials Testing ; Medical technology ; Membranes, Artificial ; Molecular Conformation ; Polycarboxylate Cement - chemistry ; Polycarboxylate Cement - radiation effects ; Porosity</subject><ispartof>Biomedical microdevices, 2007-12, Vol.9 (6), p.863-868</ispartof><rights>Springer Science+Business Media, LLC 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-2f94cadf79baf1c77fc73464d9287b08445b35b7cb3b519e832241f218bf21183</citedby><cites>FETCH-LOGICAL-c455t-2f94cadf79baf1c77fc73464d9287b08445b35b7cb3b519e832241f218bf21183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17574531$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>O'Shaughnessy, Thomas J</creatorcontrib><creatorcontrib>Hu, Jenny E</creatorcontrib><creatorcontrib>Kulp, 3rd, John L</creatorcontrib><creatorcontrib>Daly, Susan M</creatorcontrib><creatorcontrib>Ligler, Frances S</creatorcontrib><title>Laser ablation of micropores for formation of artificial planar lipid bilayers</title><title>Biomedical microdevices</title><addtitle>Biomed Microdevices</addtitle><description>Artificial lipid bilayers are a powerful tool for studying synthetic or reconstituted ion channels. Key to forming these lipid bilayers is having a small aperture in a septum separating two solution chambers. Traditional methods of aperture generation involve manually punching the aperture into the septum. While these techniques work, they are difficult to implement reliably and do not produce consistently sized apertures. Presented here is a method of using a UV excimer laser with a nanosecond scale pulse width to laser ablate apertures from 4 to 105 microm in 20 microm thick polycarbonate films for use in artificial lipid bilayer experiments. The data demonstrate that the apertures produced by laser ablation are highly reproducible and can support both the formation of stable, long-lasting lipid bilayers as well as the recording of ion channels incorporated into the bilayers.</description><subject>Biomimetic Materials - chemistry</subject><subject>Biomimetic Materials - radiation effects</subject><subject>Biotechnology</subject><subject>Ions</subject><subject>Lasers</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipid Bilayers - radiation effects</subject><subject>Lipids</subject><subject>Materials Testing</subject><subject>Medical technology</subject><subject>Membranes, Artificial</subject><subject>Molecular Conformation</subject><subject>Polycarboxylate Cement - chemistry</subject><subject>Polycarboxylate Cement - radiation effects</subject><subject>Porosity</subject><issn>1387-2176</issn><issn>1572-8781</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkUtLxDAUhYMojo7-ADdSXOiqmpt3ljL4gkE3ug5Jm0CGdlqTzmL-vS0zKLhQwk0O5Mvh3hyELgDfAsbyLgPmjJWjLDXWuhQH6AS4JKWSCg5HTZUsCUgxQ6c5rzAGLYQ4RjOQXDJO4QS9Lm32qbCusUPs1kUXijZWqeu75HMRujRV-31n0xBDrKJtir6xa5uKJvaxLlxs7NanfIaOgm2yP9-fc_Tx-PC-eC6Xb08vi_tlWTHOh5IEzSpbB6mdDVBJGSpJmWC1Jko6rBjjjnInK0cdB-0VJYRBIKDcuIGic3Sz8-1T97nxeTBtzJVvxp58t8lGMsq1FIKM5PWfpFCMChDiX5Bgrgmmk-PVL3DVbdJ6HNcQmBYIPEKwg8a_zDn5YPoUW5u2BrCZwjO78Mwkp_DM1MHl3njjWl__vNinRb8A8beTaQ</recordid><startdate>20071201</startdate><enddate>20071201</enddate><creator>O'Shaughnessy, Thomas J</creator><creator>Hu, Jenny E</creator><creator>Kulp, 3rd, John L</creator><creator>Daly, Susan M</creator><creator>Ligler, Frances S</creator><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7SP</scope><scope>7TB</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20071201</creationdate><title>Laser ablation of micropores for formation of artificial planar lipid bilayers</title><author>O'Shaughnessy, Thomas J ; Hu, Jenny E ; Kulp, 3rd, John L ; Daly, Susan M ; Ligler, Frances S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-2f94cadf79baf1c77fc73464d9287b08445b35b7cb3b519e832241f218bf21183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Biomimetic Materials - chemistry</topic><topic>Biomimetic Materials - radiation effects</topic><topic>Biotechnology</topic><topic>Ions</topic><topic>Lasers</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipid Bilayers - radiation effects</topic><topic>Lipids</topic><topic>Materials Testing</topic><topic>Medical technology</topic><topic>Membranes, Artificial</topic><topic>Molecular Conformation</topic><topic>Polycarboxylate Cement - chemistry</topic><topic>Polycarboxylate Cement - radiation effects</topic><topic>Porosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>O'Shaughnessy, Thomas J</creatorcontrib><creatorcontrib>Hu, Jenny E</creatorcontrib><creatorcontrib>Kulp, 3rd, John L</creatorcontrib><creatorcontrib>Daly, Susan M</creatorcontrib><creatorcontrib>Ligler, Frances S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest research library</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Biomedical microdevices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>O'Shaughnessy, Thomas J</au><au>Hu, Jenny E</au><au>Kulp, 3rd, John L</au><au>Daly, Susan M</au><au>Ligler, Frances S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laser ablation of micropores for formation of artificial planar lipid bilayers</atitle><jtitle>Biomedical microdevices</jtitle><addtitle>Biomed Microdevices</addtitle><date>2007-12-01</date><risdate>2007</risdate><volume>9</volume><issue>6</issue><spage>863</spage><epage>868</epage><pages>863-868</pages><issn>1387-2176</issn><eissn>1572-8781</eissn><coden>BMICFC</coden><abstract>Artificial lipid bilayers are a powerful tool for studying synthetic or reconstituted ion channels. Key to forming these lipid bilayers is having a small aperture in a septum separating two solution chambers. Traditional methods of aperture generation involve manually punching the aperture into the septum. While these techniques work, they are difficult to implement reliably and do not produce consistently sized apertures. Presented here is a method of using a UV excimer laser with a nanosecond scale pulse width to laser ablate apertures from 4 to 105 microm in 20 microm thick polycarbonate films for use in artificial lipid bilayer experiments. The data demonstrate that the apertures produced by laser ablation are highly reproducible and can support both the formation of stable, long-lasting lipid bilayers as well as the recording of ion channels incorporated into the bilayers.</abstract><cop>United States</cop><pub>Springer Nature B.V</pub><pmid>17574531</pmid><doi>10.1007/s10544-007-9099-6</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1387-2176 |
ispartof | Biomedical microdevices, 2007-12, Vol.9 (6), p.863-868 |
issn | 1387-2176 1572-8781 |
language | eng |
recordid | cdi_proquest_miscellaneous_743597662 |
source | MEDLINE; SpringerLink |
subjects | Biomimetic Materials - chemistry Biomimetic Materials - radiation effects Biotechnology Ions Lasers Lipid Bilayers - chemistry Lipid Bilayers - radiation effects Lipids Materials Testing Medical technology Membranes, Artificial Molecular Conformation Polycarboxylate Cement - chemistry Polycarboxylate Cement - radiation effects Porosity |
title | Laser ablation of micropores for formation of artificial planar lipid bilayers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A26%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laser%20ablation%20of%20micropores%20for%20formation%20of%20artificial%20planar%20lipid%20bilayers&rft.jtitle=Biomedical%20microdevices&rft.au=O'Shaughnessy,%20Thomas%20J&rft.date=2007-12-01&rft.volume=9&rft.issue=6&rft.spage=863&rft.epage=868&rft.pages=863-868&rft.issn=1387-2176&rft.eissn=1572-8781&rft.coden=BMICFC&rft_id=info:doi/10.1007/s10544-007-9099-6&rft_dat=%3Cproquest_cross%3E743597662%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=212121160&rft_id=info:pmid/17574531&rfr_iscdi=true |