A Jordan–Brouwer Separation Theorem for Polyhedral Pseudomanifolds

The Jordan Curve Theorem referring to a simple closed curve in the plane has a particularly simple proof in the case that the curve is polygonal, called the “raindrop proof”. We generalize the notion of a simple closed polygon to that of a polyhedral ( d −1)-pseudomanifold ( d ≥2) and prove a Jordan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete & computational geometry 2009-09, Vol.42 (2), p.277-304
Hauptverfasser: Perles, Micha A., Martini, Horst, Kupitz, Yaakov S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 304
container_issue 2
container_start_page 277
container_title Discrete & computational geometry
container_volume 42
creator Perles, Micha A.
Martini, Horst
Kupitz, Yaakov S.
description The Jordan Curve Theorem referring to a simple closed curve in the plane has a particularly simple proof in the case that the curve is polygonal, called the “raindrop proof”. We generalize the notion of a simple closed polygon to that of a polyhedral ( d −1)-pseudomanifold ( d ≥2) and prove a Jordan–Brouwer Separation Theorem for such a manifold embedded in ℝ d . As a by-product, we get bounds on the polygonal diameter of the interior and exterior of such a manifold which are almost tight. This puts the result within the frame of computational geometry.
doi_str_mv 10.1007/s00454-009-9192-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743597586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743597586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-bc061d8ffbcba0dd2a34d48f4fa0d819c638cf4a298f0b8428cda2f5b74a82993</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqXwAewiNqwC49hJ7GUpb1WiEmVtOX7QVElc7EaoO_6BP-RLcBUWCInVzEjnXo0OQqcYLjBAeRkAaE5TAJ5yzLMU9tAIUxIXSuk-GgEueZqTsjhERyGsIOIc2AhdT5JH57Xsvj4-r7zr341Pns1aermpXZcslsZ50ybW-WTumu3SaC-bZB5Mr10ru9q6RodjdGBlE8zJzxyjl9ubxfQ-nT3dPUwns1QRDpu0UlBgzaytVCVB60wSqimz1MaLYa4KwpSlMuPMQsVoxpSWmc2rkkqWcU7G6HzoXXv31puwEW0dlGka2RnXB1FSkvMyZ0Ukz_6QK9f7Lj4nMC9KwgrGIoQHSHkXgjdWrH3dSr8VGMTOqhisimhV7KwKiJlsyITIdq_G_yr-N_QNA897Wg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196738688</pqid></control><display><type>article</type><title>A Jordan–Brouwer Separation Theorem for Polyhedral Pseudomanifolds</title><source>SpringerLink Journals - AutoHoldings</source><creator>Perles, Micha A. ; Martini, Horst ; Kupitz, Yaakov S.</creator><creatorcontrib>Perles, Micha A. ; Martini, Horst ; Kupitz, Yaakov S.</creatorcontrib><description>The Jordan Curve Theorem referring to a simple closed curve in the plane has a particularly simple proof in the case that the curve is polygonal, called the “raindrop proof”. We generalize the notion of a simple closed polygon to that of a polyhedral ( d −1)-pseudomanifold ( d ≥2) and prove a Jordan–Brouwer Separation Theorem for such a manifold embedded in ℝ d . As a by-product, we get bounds on the polygonal diameter of the interior and exterior of such a manifold which are almost tight. This puts the result within the frame of computational geometry.</description><identifier>ISSN: 0179-5376</identifier><identifier>EISSN: 1432-0444</identifier><identifier>DOI: 10.1007/s00454-009-9192-0</identifier><identifier>CODEN: DCGEER</identifier><language>eng</language><publisher>New York: Springer-Verlag</publisher><subject>Combinatorics ; Computational Mathematics and Numerical Analysis ; Geometry ; Mathematics ; Mathematics and Statistics ; Polygons ; Theorems ; Topological manifolds</subject><ispartof>Discrete &amp; computational geometry, 2009-09, Vol.42 (2), p.277-304</ispartof><rights>Springer Science+Business Media, LLC 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-bc061d8ffbcba0dd2a34d48f4fa0d819c638cf4a298f0b8428cda2f5b74a82993</citedby><cites>FETCH-LOGICAL-c390t-bc061d8ffbcba0dd2a34d48f4fa0d819c638cf4a298f0b8428cda2f5b74a82993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00454-009-9192-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00454-009-9192-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Perles, Micha A.</creatorcontrib><creatorcontrib>Martini, Horst</creatorcontrib><creatorcontrib>Kupitz, Yaakov S.</creatorcontrib><title>A Jordan–Brouwer Separation Theorem for Polyhedral Pseudomanifolds</title><title>Discrete &amp; computational geometry</title><addtitle>Discrete Comput Geom</addtitle><description>The Jordan Curve Theorem referring to a simple closed curve in the plane has a particularly simple proof in the case that the curve is polygonal, called the “raindrop proof”. We generalize the notion of a simple closed polygon to that of a polyhedral ( d −1)-pseudomanifold ( d ≥2) and prove a Jordan–Brouwer Separation Theorem for such a manifold embedded in ℝ d . As a by-product, we get bounds on the polygonal diameter of the interior and exterior of such a manifold which are almost tight. This puts the result within the frame of computational geometry.</description><subject>Combinatorics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Polygons</subject><subject>Theorems</subject><subject>Topological manifolds</subject><issn>0179-5376</issn><issn>1432-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kMtOwzAQRS0EEqXwAewiNqwC49hJ7GUpb1WiEmVtOX7QVElc7EaoO_6BP-RLcBUWCInVzEjnXo0OQqcYLjBAeRkAaE5TAJ5yzLMU9tAIUxIXSuk-GgEueZqTsjhERyGsIOIc2AhdT5JH57Xsvj4-r7zr341Pns1aermpXZcslsZ50ybW-WTumu3SaC-bZB5Mr10ru9q6RodjdGBlE8zJzxyjl9ubxfQ-nT3dPUwns1QRDpu0UlBgzaytVCVB60wSqimz1MaLYa4KwpSlMuPMQsVoxpSWmc2rkkqWcU7G6HzoXXv31puwEW0dlGka2RnXB1FSkvMyZ0Ukz_6QK9f7Lj4nMC9KwgrGIoQHSHkXgjdWrH3dSr8VGMTOqhisimhV7KwKiJlsyITIdq_G_yr-N_QNA897Wg</recordid><startdate>20090901</startdate><enddate>20090901</enddate><creator>Perles, Micha A.</creator><creator>Martini, Horst</creator><creator>Kupitz, Yaakov S.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20090901</creationdate><title>A Jordan–Brouwer Separation Theorem for Polyhedral Pseudomanifolds</title><author>Perles, Micha A. ; Martini, Horst ; Kupitz, Yaakov S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-bc061d8ffbcba0dd2a34d48f4fa0d819c638cf4a298f0b8428cda2f5b74a82993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Combinatorics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Polygons</topic><topic>Theorems</topic><topic>Topological manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perles, Micha A.</creatorcontrib><creatorcontrib>Martini, Horst</creatorcontrib><creatorcontrib>Kupitz, Yaakov S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Discrete &amp; computational geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perles, Micha A.</au><au>Martini, Horst</au><au>Kupitz, Yaakov S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Jordan–Brouwer Separation Theorem for Polyhedral Pseudomanifolds</atitle><jtitle>Discrete &amp; computational geometry</jtitle><stitle>Discrete Comput Geom</stitle><date>2009-09-01</date><risdate>2009</risdate><volume>42</volume><issue>2</issue><spage>277</spage><epage>304</epage><pages>277-304</pages><issn>0179-5376</issn><eissn>1432-0444</eissn><coden>DCGEER</coden><abstract>The Jordan Curve Theorem referring to a simple closed curve in the plane has a particularly simple proof in the case that the curve is polygonal, called the “raindrop proof”. We generalize the notion of a simple closed polygon to that of a polyhedral ( d −1)-pseudomanifold ( d ≥2) and prove a Jordan–Brouwer Separation Theorem for such a manifold embedded in ℝ d . As a by-product, we get bounds on the polygonal diameter of the interior and exterior of such a manifold which are almost tight. This puts the result within the frame of computational geometry.</abstract><cop>New York</cop><pub>Springer-Verlag</pub><doi>10.1007/s00454-009-9192-0</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0179-5376
ispartof Discrete & computational geometry, 2009-09, Vol.42 (2), p.277-304
issn 0179-5376
1432-0444
language eng
recordid cdi_proquest_miscellaneous_743597586
source SpringerLink Journals - AutoHoldings
subjects Combinatorics
Computational Mathematics and Numerical Analysis
Geometry
Mathematics
Mathematics and Statistics
Polygons
Theorems
Topological manifolds
title A Jordan–Brouwer Separation Theorem for Polyhedral Pseudomanifolds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T22%3A47%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Jordan%E2%80%93Brouwer%20Separation%20Theorem%20for%20Polyhedral%20Pseudomanifolds&rft.jtitle=Discrete%20&%20computational%20geometry&rft.au=Perles,%20Micha%20A.&rft.date=2009-09-01&rft.volume=42&rft.issue=2&rft.spage=277&rft.epage=304&rft.pages=277-304&rft.issn=0179-5376&rft.eissn=1432-0444&rft.coden=DCGEER&rft_id=info:doi/10.1007/s00454-009-9192-0&rft_dat=%3Cproquest_cross%3E743597586%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196738688&rft_id=info:pmid/&rfr_iscdi=true