Dual Representations for Convex Risk Measures viaConjugate Duality

The aim of this paper is to give dual representations for different convex risk measures by employing their conjugate functions. To establish the formulas for the conjugates, we use on the one hand some classical results from convex analysis and on the other hand some tools from the conjugate dualit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optimization theory and applications 2010-02, Vol.144 (2), p.185-203
Hauptverfasser: Bo, R I, Lorenz, N, Wanka, G
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 203
container_issue 2
container_start_page 185
container_title Journal of optimization theory and applications
container_volume 144
creator Bo, R I
Lorenz, N
Wanka, G
description The aim of this paper is to give dual representations for different convex risk measures by employing their conjugate functions. To establish the formulas for the conjugates, we use on the one hand some classical results from convex analysis and on the other hand some tools from the conjugate duality theory. Some characterizations of so-called deviation measures recently given in the literature turn out to be direct consequences of our results.
doi_str_mv 10.1007/s10957-009-9595-3
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_743589377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743589377</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_7435893773</originalsourceid><addsrcrecordid>eNqNi70OgjAURjtoIv48gFs3p-qFQmpX_-LiQtxJYy6miFS5LdG3FxMfwOlLzjkfY_MYljGAWlEMOlMCQAud6UzIAYsAkkTIROoRGxNV0Mu1SiO22QVT8xwfLRI23njrGuKla_nWNR2-eG7pxk9oKPQF76zpeRWuxiP_Xq1_T9mwNDXh7LcTtjjsz9ujeLTuGZB8cbd0wbo2DbpAhUplttZSKfl_-QHAEkKV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>743589377</pqid></control><display><type>article</type><title>Dual Representations for Convex Risk Measures viaConjugate Duality</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bo, R I ; Lorenz, N ; Wanka, G</creator><creatorcontrib>Bo, R I ; Lorenz, N ; Wanka, G</creatorcontrib><description>The aim of this paper is to give dual representations for different convex risk measures by employing their conjugate functions. To establish the formulas for the conjugates, we use on the one hand some classical results from convex analysis and on the other hand some tools from the conjugate duality theory. Some characterizations of so-called deviation measures recently given in the literature turn out to be direct consequences of our results.</description><identifier>ISSN: 0022-3239</identifier><identifier>DOI: 10.1007/s10957-009-9595-3</identifier><language>eng</language><ispartof>Journal of optimization theory and applications, 2010-02, Vol.144 (2), p.185-203</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bo, R I</creatorcontrib><creatorcontrib>Lorenz, N</creatorcontrib><creatorcontrib>Wanka, G</creatorcontrib><title>Dual Representations for Convex Risk Measures viaConjugate Duality</title><title>Journal of optimization theory and applications</title><description>The aim of this paper is to give dual representations for different convex risk measures by employing their conjugate functions. To establish the formulas for the conjugates, we use on the one hand some classical results from convex analysis and on the other hand some tools from the conjugate duality theory. Some characterizations of so-called deviation measures recently given in the literature turn out to be direct consequences of our results.</description><issn>0022-3239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNi70OgjAURjtoIv48gFs3p-qFQmpX_-LiQtxJYy6miFS5LdG3FxMfwOlLzjkfY_MYljGAWlEMOlMCQAud6UzIAYsAkkTIROoRGxNV0Mu1SiO22QVT8xwfLRI23njrGuKla_nWNR2-eG7pxk9oKPQF76zpeRWuxiP_Xq1_T9mwNDXh7LcTtjjsz9ujeLTuGZB8cbd0wbo2DbpAhUplttZSKfl_-QHAEkKV</recordid><startdate>20100201</startdate><enddate>20100201</enddate><creator>Bo, R I</creator><creator>Lorenz, N</creator><creator>Wanka, G</creator><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100201</creationdate><title>Dual Representations for Convex Risk Measures viaConjugate Duality</title><author>Bo, R I ; Lorenz, N ; Wanka, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_7435893773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bo, R I</creatorcontrib><creatorcontrib>Lorenz, N</creatorcontrib><creatorcontrib>Wanka, G</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of optimization theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bo, R I</au><au>Lorenz, N</au><au>Wanka, G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual Representations for Convex Risk Measures viaConjugate Duality</atitle><jtitle>Journal of optimization theory and applications</jtitle><date>2010-02-01</date><risdate>2010</risdate><volume>144</volume><issue>2</issue><spage>185</spage><epage>203</epage><pages>185-203</pages><issn>0022-3239</issn><abstract>The aim of this paper is to give dual representations for different convex risk measures by employing their conjugate functions. To establish the formulas for the conjugates, we use on the one hand some classical results from convex analysis and on the other hand some tools from the conjugate duality theory. Some characterizations of so-called deviation measures recently given in the literature turn out to be direct consequences of our results.</abstract><doi>10.1007/s10957-009-9595-3</doi></addata></record>
fulltext fulltext
identifier ISSN: 0022-3239
ispartof Journal of optimization theory and applications, 2010-02, Vol.144 (2), p.185-203
issn 0022-3239
language eng
recordid cdi_proquest_miscellaneous_743589377
source SpringerLink Journals - AutoHoldings
title Dual Representations for Convex Risk Measures viaConjugate Duality
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A16%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%20Representations%20for%20Convex%20Risk%20Measures%20viaConjugate%20Duality&rft.jtitle=Journal%20of%20optimization%20theory%20and%20applications&rft.au=Bo,%20R%20I&rft.date=2010-02-01&rft.volume=144&rft.issue=2&rft.spage=185&rft.epage=203&rft.pages=185-203&rft.issn=0022-3239&rft_id=info:doi/10.1007/s10957-009-9595-3&rft_dat=%3Cproquest%3E743589377%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=743589377&rft_id=info:pmid/&rfr_iscdi=true