Dual Representations for Convex Risk Measures viaConjugate Duality
The aim of this paper is to give dual representations for different convex risk measures by employing their conjugate functions. To establish the formulas for the conjugates, we use on the one hand some classical results from convex analysis and on the other hand some tools from the conjugate dualit...
Gespeichert in:
Veröffentlicht in: | Journal of optimization theory and applications 2010-02, Vol.144 (2), p.185-203 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 203 |
---|---|
container_issue | 2 |
container_start_page | 185 |
container_title | Journal of optimization theory and applications |
container_volume | 144 |
creator | Bo, R I Lorenz, N Wanka, G |
description | The aim of this paper is to give dual representations for different convex risk measures by employing their conjugate functions. To establish the formulas for the conjugates, we use on the one hand some classical results from convex analysis and on the other hand some tools from the conjugate duality theory. Some characterizations of so-called deviation measures recently given in the literature turn out to be direct consequences of our results. |
doi_str_mv | 10.1007/s10957-009-9595-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_743589377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743589377</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_7435893773</originalsourceid><addsrcrecordid>eNqNi70OgjAURjtoIv48gFs3p-qFQmpX_-LiQtxJYy6miFS5LdG3FxMfwOlLzjkfY_MYljGAWlEMOlMCQAud6UzIAYsAkkTIROoRGxNV0Mu1SiO22QVT8xwfLRI23njrGuKla_nWNR2-eG7pxk9oKPQF76zpeRWuxiP_Xq1_T9mwNDXh7LcTtjjsz9ujeLTuGZB8cbd0wbo2DbpAhUplttZSKfl_-QHAEkKV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>743589377</pqid></control><display><type>article</type><title>Dual Representations for Convex Risk Measures viaConjugate Duality</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bo, R I ; Lorenz, N ; Wanka, G</creator><creatorcontrib>Bo, R I ; Lorenz, N ; Wanka, G</creatorcontrib><description>The aim of this paper is to give dual representations for different convex risk measures by employing their conjugate functions. To establish the formulas for the conjugates, we use on the one hand some classical results from convex analysis and on the other hand some tools from the conjugate duality theory. Some characterizations of so-called deviation measures recently given in the literature turn out to be direct consequences of our results.</description><identifier>ISSN: 0022-3239</identifier><identifier>DOI: 10.1007/s10957-009-9595-3</identifier><language>eng</language><ispartof>Journal of optimization theory and applications, 2010-02, Vol.144 (2), p.185-203</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bo, R I</creatorcontrib><creatorcontrib>Lorenz, N</creatorcontrib><creatorcontrib>Wanka, G</creatorcontrib><title>Dual Representations for Convex Risk Measures viaConjugate Duality</title><title>Journal of optimization theory and applications</title><description>The aim of this paper is to give dual representations for different convex risk measures by employing their conjugate functions. To establish the formulas for the conjugates, we use on the one hand some classical results from convex analysis and on the other hand some tools from the conjugate duality theory. Some characterizations of so-called deviation measures recently given in the literature turn out to be direct consequences of our results.</description><issn>0022-3239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNi70OgjAURjtoIv48gFs3p-qFQmpX_-LiQtxJYy6miFS5LdG3FxMfwOlLzjkfY_MYljGAWlEMOlMCQAud6UzIAYsAkkTIROoRGxNV0Mu1SiO22QVT8xwfLRI23njrGuKla_nWNR2-eG7pxk9oKPQF76zpeRWuxiP_Xq1_T9mwNDXh7LcTtjjsz9ujeLTuGZB8cbd0wbo2DbpAhUplttZSKfl_-QHAEkKV</recordid><startdate>20100201</startdate><enddate>20100201</enddate><creator>Bo, R I</creator><creator>Lorenz, N</creator><creator>Wanka, G</creator><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100201</creationdate><title>Dual Representations for Convex Risk Measures viaConjugate Duality</title><author>Bo, R I ; Lorenz, N ; Wanka, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_7435893773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bo, R I</creatorcontrib><creatorcontrib>Lorenz, N</creatorcontrib><creatorcontrib>Wanka, G</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of optimization theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bo, R I</au><au>Lorenz, N</au><au>Wanka, G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual Representations for Convex Risk Measures viaConjugate Duality</atitle><jtitle>Journal of optimization theory and applications</jtitle><date>2010-02-01</date><risdate>2010</risdate><volume>144</volume><issue>2</issue><spage>185</spage><epage>203</epage><pages>185-203</pages><issn>0022-3239</issn><abstract>The aim of this paper is to give dual representations for different convex risk measures by employing their conjugate functions. To establish the formulas for the conjugates, we use on the one hand some classical results from convex analysis and on the other hand some tools from the conjugate duality theory. Some characterizations of so-called deviation measures recently given in the literature turn out to be direct consequences of our results.</abstract><doi>10.1007/s10957-009-9595-3</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3239 |
ispartof | Journal of optimization theory and applications, 2010-02, Vol.144 (2), p.185-203 |
issn | 0022-3239 |
language | eng |
recordid | cdi_proquest_miscellaneous_743589377 |
source | SpringerLink Journals - AutoHoldings |
title | Dual Representations for Convex Risk Measures viaConjugate Duality |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A16%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%20Representations%20for%20Convex%20Risk%20Measures%20viaConjugate%20Duality&rft.jtitle=Journal%20of%20optimization%20theory%20and%20applications&rft.au=Bo,%20R%20I&rft.date=2010-02-01&rft.volume=144&rft.issue=2&rft.spage=185&rft.epage=203&rft.pages=185-203&rft.issn=0022-3239&rft_id=info:doi/10.1007/s10957-009-9595-3&rft_dat=%3Cproquest%3E743589377%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=743589377&rft_id=info:pmid/&rfr_iscdi=true |