Experimental Evidence for Spatial Self-Organization and Its Emergent Effects in Mussel Bed Ecosystems
Spatial self-organization is the main theoretical explanation for the global occurrence of regular or otherwise coherent spatial patterns in ecosystems. Using mussel beds as a model ecosystem, we provide an experimental demonstration of spatial self-organization. Under homogeneous laboratory conditi...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2008-10, Vol.322 (5902), p.739-742 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 742 |
---|---|
container_issue | 5902 |
container_start_page | 739 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 322 |
creator | van de Koppel, Johan Gascoigne, Joanna C. Theraulaz, Guy Rietkerk, Max Mooij, Wolf M. Herman, Peter M. J. |
description | Spatial self-organization is the main theoretical explanation for the global occurrence of regular or otherwise coherent spatial patterns in ecosystems. Using mussel beds as a model ecosystem, we provide an experimental demonstration of spatial self-organization. Under homogeneous laboratory conditions, mussels developed regular patterns, similar to those in the field. An individual-based model derived from our experiments showed that interactions between individuals explained the observed patterns. Furthermore, a field study showed that pattern formation affected ecosystem-level processes in terms of improved growth and resistance to wave action. Our results imply that spatial self-organization is an important determinant of the structure and functioning of ecosystems, and it needs to be considered in their conservation. |
doi_str_mv | 10.1126/science.1163952 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_743578428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20145175</jstor_id><sourcerecordid>20145175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c605t-31952e5099f16ced09c2e3411df376e594fd2d61c27b523d6e1347494b7c3ffc3</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxS0EosvCmRPIQgJOof52fIQqQKWiHgrnyGuPq6wSZ7GTivavr6ONAHGgJ8tvfvOkNw-hl5R8oJSp0-w6iA7KR3Ej2SO0ocTIyjDCH6MNIVxVNdHyBD3LeU9ImRn-FJ3Q2mjBJd8gaH4dIHUDxMn2uLnp_OKHw5jw1cFOXRGvoA_VZbq2sbsryhixjR6fTxk3A6TrsombEMAVoYv425wz9PgTeNy4Md_mCYb8HD0Jts_wYn236Mfn5vvZ1-ri8sv52ceLyikip4rTkgEkMSZQ5cAT4xhwQakPXCuQRgTPvKKO6Z1k3CugXGhhxE47HoLjW_T-6HtI488Z8tQOXXbQ9zbCOOd2Ca1rwepCvvsvqYzmtVHiQZBRbgwR-kGQGiUFKUffojf_gPtxTrHcZTErBUmzQKdHyKUx5wShPZSWbLptKWmX6tu1-natvmy8Xm3n3QD-D792XYC3K2Czs31INrou_-YYqYUqoQv36sjt8zSmv-ZUSKolvwe4H8Aq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213593595</pqid></control><display><type>article</type><title>Experimental Evidence for Spatial Self-Organization and Its Emergent Effects in Mussel Bed Ecosystems</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><source>MEDLINE</source><creator>van de Koppel, Johan ; Gascoigne, Joanna C. ; Theraulaz, Guy ; Rietkerk, Max ; Mooij, Wolf M. ; Herman, Peter M. J.</creator><creatorcontrib>van de Koppel, Johan ; Gascoigne, Joanna C. ; Theraulaz, Guy ; Rietkerk, Max ; Mooij, Wolf M. ; Herman, Peter M. J.</creatorcontrib><description>Spatial self-organization is the main theoretical explanation for the global occurrence of regular or otherwise coherent spatial patterns in ecosystems. Using mussel beds as a model ecosystem, we provide an experimental demonstration of spatial self-organization. Under homogeneous laboratory conditions, mussels developed regular patterns, similar to those in the field. An individual-based model derived from our experiments showed that interactions between individuals explained the observed patterns. Furthermore, a field study showed that pattern formation affected ecosystem-level processes in terms of improved growth and resistance to wave action. Our results imply that spatial self-organization is an important determinant of the structure and functioning of ecosystems, and it needs to be considered in their conservation.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1163952</identifier><identifier>PMID: 18974353</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Association for the Advancement of Science</publisher><subject>Animal and plant ecology ; Animal, plant and microbial ecology ; Animals ; Aquatic ecosystems ; Biogeography ; Biological and medical sciences ; Biomass ; Bivalvia ; Bivalvia - physiology ; Ecology ; Ecosystem ; Ecosystem models ; Ecosystems ; Environmental conservation ; Food movements ; Fundamental and applied biological sciences. Psychology ; Marine ; Marine ecology ; Modeling ; Models, Biological ; Mollusks ; Movement ; Mussels ; Population Dynamics ; Sea water ecosystems ; Spatial Behavior ; Synecology ; Theory ; Wales</subject><ispartof>Science (American Association for the Advancement of Science), 2008-10, Vol.322 (5902), p.739-742</ispartof><rights>Copyright 2008 American Association for the Advancement of Science</rights><rights>2008 INIST-CNRS</rights><rights>Copyright © 2008, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c605t-31952e5099f16ced09c2e3411df376e594fd2d61c27b523d6e1347494b7c3ffc3</citedby><cites>FETCH-LOGICAL-c605t-31952e5099f16ced09c2e3411df376e594fd2d61c27b523d6e1347494b7c3ffc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20145175$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20145175$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,2871,2872,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20846738$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18974353$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>van de Koppel, Johan</creatorcontrib><creatorcontrib>Gascoigne, Joanna C.</creatorcontrib><creatorcontrib>Theraulaz, Guy</creatorcontrib><creatorcontrib>Rietkerk, Max</creatorcontrib><creatorcontrib>Mooij, Wolf M.</creatorcontrib><creatorcontrib>Herman, Peter M. J.</creatorcontrib><title>Experimental Evidence for Spatial Self-Organization and Its Emergent Effects in Mussel Bed Ecosystems</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Spatial self-organization is the main theoretical explanation for the global occurrence of regular or otherwise coherent spatial patterns in ecosystems. Using mussel beds as a model ecosystem, we provide an experimental demonstration of spatial self-organization. Under homogeneous laboratory conditions, mussels developed regular patterns, similar to those in the field. An individual-based model derived from our experiments showed that interactions between individuals explained the observed patterns. Furthermore, a field study showed that pattern formation affected ecosystem-level processes in terms of improved growth and resistance to wave action. Our results imply that spatial self-organization is an important determinant of the structure and functioning of ecosystems, and it needs to be considered in their conservation.</description><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Animals</subject><subject>Aquatic ecosystems</subject><subject>Biogeography</subject><subject>Biological and medical sciences</subject><subject>Biomass</subject><subject>Bivalvia</subject><subject>Bivalvia - physiology</subject><subject>Ecology</subject><subject>Ecosystem</subject><subject>Ecosystem models</subject><subject>Ecosystems</subject><subject>Environmental conservation</subject><subject>Food movements</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Marine</subject><subject>Marine ecology</subject><subject>Modeling</subject><subject>Models, Biological</subject><subject>Mollusks</subject><subject>Movement</subject><subject>Mussels</subject><subject>Population Dynamics</subject><subject>Sea water ecosystems</subject><subject>Spatial Behavior</subject><subject>Synecology</subject><subject>Theory</subject><subject>Wales</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1v1DAQxS0EosvCmRPIQgJOof52fIQqQKWiHgrnyGuPq6wSZ7GTivavr6ONAHGgJ8tvfvOkNw-hl5R8oJSp0-w6iA7KR3Ej2SO0ocTIyjDCH6MNIVxVNdHyBD3LeU9ImRn-FJ3Q2mjBJd8gaH4dIHUDxMn2uLnp_OKHw5jw1cFOXRGvoA_VZbq2sbsryhixjR6fTxk3A6TrsombEMAVoYv425wz9PgTeNy4Md_mCYb8HD0Jts_wYn236Mfn5vvZ1-ri8sv52ceLyikip4rTkgEkMSZQ5cAT4xhwQakPXCuQRgTPvKKO6Z1k3CugXGhhxE47HoLjW_T-6HtI488Z8tQOXXbQ9zbCOOd2Ca1rwepCvvsvqYzmtVHiQZBRbgwR-kGQGiUFKUffojf_gPtxTrHcZTErBUmzQKdHyKUx5wShPZSWbLptKWmX6tu1-natvmy8Xm3n3QD-D792XYC3K2Czs31INrou_-YYqYUqoQv36sjt8zSmv-ZUSKolvwe4H8Aq</recordid><startdate>20081031</startdate><enddate>20081031</enddate><creator>van de Koppel, Johan</creator><creator>Gascoigne, Joanna C.</creator><creator>Theraulaz, Guy</creator><creator>Rietkerk, Max</creator><creator>Mooij, Wolf M.</creator><creator>Herman, Peter M. J.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7QH</scope><scope>7ST</scope><scope>7TN</scope><scope>7U6</scope><scope>7UA</scope><scope>F1W</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>7X8</scope></search><sort><creationdate>20081031</creationdate><title>Experimental Evidence for Spatial Self-Organization and Its Emergent Effects in Mussel Bed Ecosystems</title><author>van de Koppel, Johan ; Gascoigne, Joanna C. ; Theraulaz, Guy ; Rietkerk, Max ; Mooij, Wolf M. ; Herman, Peter M. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c605t-31952e5099f16ced09c2e3411df376e594fd2d61c27b523d6e1347494b7c3ffc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Animals</topic><topic>Aquatic ecosystems</topic><topic>Biogeography</topic><topic>Biological and medical sciences</topic><topic>Biomass</topic><topic>Bivalvia</topic><topic>Bivalvia - physiology</topic><topic>Ecology</topic><topic>Ecosystem</topic><topic>Ecosystem models</topic><topic>Ecosystems</topic><topic>Environmental conservation</topic><topic>Food movements</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Marine</topic><topic>Marine ecology</topic><topic>Modeling</topic><topic>Models, Biological</topic><topic>Mollusks</topic><topic>Movement</topic><topic>Mussels</topic><topic>Population Dynamics</topic><topic>Sea water ecosystems</topic><topic>Spatial Behavior</topic><topic>Synecology</topic><topic>Theory</topic><topic>Wales</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van de Koppel, Johan</creatorcontrib><creatorcontrib>Gascoigne, Joanna C.</creatorcontrib><creatorcontrib>Theraulaz, Guy</creatorcontrib><creatorcontrib>Rietkerk, Max</creatorcontrib><creatorcontrib>Mooij, Wolf M.</creatorcontrib><creatorcontrib>Herman, Peter M. J.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van de Koppel, Johan</au><au>Gascoigne, Joanna C.</au><au>Theraulaz, Guy</au><au>Rietkerk, Max</au><au>Mooij, Wolf M.</au><au>Herman, Peter M. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental Evidence for Spatial Self-Organization and Its Emergent Effects in Mussel Bed Ecosystems</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2008-10-31</date><risdate>2008</risdate><volume>322</volume><issue>5902</issue><spage>739</spage><epage>742</epage><pages>739-742</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Spatial self-organization is the main theoretical explanation for the global occurrence of regular or otherwise coherent spatial patterns in ecosystems. Using mussel beds as a model ecosystem, we provide an experimental demonstration of spatial self-organization. Under homogeneous laboratory conditions, mussels developed regular patterns, similar to those in the field. An individual-based model derived from our experiments showed that interactions between individuals explained the observed patterns. Furthermore, a field study showed that pattern formation affected ecosystem-level processes in terms of improved growth and resistance to wave action. Our results imply that spatial self-organization is an important determinant of the structure and functioning of ecosystems, and it needs to be considered in their conservation.</abstract><cop>Washington, DC</cop><pub>American Association for the Advancement of Science</pub><pmid>18974353</pmid><doi>10.1126/science.1163952</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2008-10, Vol.322 (5902), p.739-742 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_743578428 |
source | American Association for the Advancement of Science; Jstor Complete Legacy; MEDLINE |
subjects | Animal and plant ecology Animal, plant and microbial ecology Animals Aquatic ecosystems Biogeography Biological and medical sciences Biomass Bivalvia Bivalvia - physiology Ecology Ecosystem Ecosystem models Ecosystems Environmental conservation Food movements Fundamental and applied biological sciences. Psychology Marine Marine ecology Modeling Models, Biological Mollusks Movement Mussels Population Dynamics Sea water ecosystems Spatial Behavior Synecology Theory Wales |
title | Experimental Evidence for Spatial Self-Organization and Its Emergent Effects in Mussel Bed Ecosystems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T15%3A06%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20Evidence%20for%20Spatial%20Self-Organization%20and%20Its%20Emergent%20Effects%20in%20Mussel%20Bed%20Ecosystems&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=van%20de%20Koppel,%20Johan&rft.date=2008-10-31&rft.volume=322&rft.issue=5902&rft.spage=739&rft.epage=742&rft.pages=739-742&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1163952&rft_dat=%3Cjstor_proqu%3E20145175%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213593595&rft_id=info:pmid/18974353&rft_jstor_id=20145175&rfr_iscdi=true |