Experimental Evidence for Spatial Self-Organization and Its Emergent Effects in Mussel Bed Ecosystems

Spatial self-organization is the main theoretical explanation for the global occurrence of regular or otherwise coherent spatial patterns in ecosystems. Using mussel beds as a model ecosystem, we provide an experimental demonstration of spatial self-organization. Under homogeneous laboratory conditi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2008-10, Vol.322 (5902), p.739-742
Hauptverfasser: van de Koppel, Johan, Gascoigne, Joanna C., Theraulaz, Guy, Rietkerk, Max, Mooij, Wolf M., Herman, Peter M. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 742
container_issue 5902
container_start_page 739
container_title Science (American Association for the Advancement of Science)
container_volume 322
creator van de Koppel, Johan
Gascoigne, Joanna C.
Theraulaz, Guy
Rietkerk, Max
Mooij, Wolf M.
Herman, Peter M. J.
description Spatial self-organization is the main theoretical explanation for the global occurrence of regular or otherwise coherent spatial patterns in ecosystems. Using mussel beds as a model ecosystem, we provide an experimental demonstration of spatial self-organization. Under homogeneous laboratory conditions, mussels developed regular patterns, similar to those in the field. An individual-based model derived from our experiments showed that interactions between individuals explained the observed patterns. Furthermore, a field study showed that pattern formation affected ecosystem-level processes in terms of improved growth and resistance to wave action. Our results imply that spatial self-organization is an important determinant of the structure and functioning of ecosystems, and it needs to be considered in their conservation.
doi_str_mv 10.1126/science.1163952
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_743578428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20145175</jstor_id><sourcerecordid>20145175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c605t-31952e5099f16ced09c2e3411df376e594fd2d61c27b523d6e1347494b7c3ffc3</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxS0EosvCmRPIQgJOof52fIQqQKWiHgrnyGuPq6wSZ7GTivavr6ONAHGgJ8tvfvOkNw-hl5R8oJSp0-w6iA7KR3Ej2SO0ocTIyjDCH6MNIVxVNdHyBD3LeU9ImRn-FJ3Q2mjBJd8gaH4dIHUDxMn2uLnp_OKHw5jw1cFOXRGvoA_VZbq2sbsryhixjR6fTxk3A6TrsombEMAVoYv425wz9PgTeNy4Md_mCYb8HD0Jts_wYn236Mfn5vvZ1-ri8sv52ceLyikip4rTkgEkMSZQ5cAT4xhwQakPXCuQRgTPvKKO6Z1k3CugXGhhxE47HoLjW_T-6HtI488Z8tQOXXbQ9zbCOOd2Ca1rwepCvvsvqYzmtVHiQZBRbgwR-kGQGiUFKUffojf_gPtxTrHcZTErBUmzQKdHyKUx5wShPZSWbLptKWmX6tu1-natvmy8Xm3n3QD-D792XYC3K2Czs31INrou_-YYqYUqoQv36sjt8zSmv-ZUSKolvwe4H8Aq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213593595</pqid></control><display><type>article</type><title>Experimental Evidence for Spatial Self-Organization and Its Emergent Effects in Mussel Bed Ecosystems</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><source>MEDLINE</source><creator>van de Koppel, Johan ; Gascoigne, Joanna C. ; Theraulaz, Guy ; Rietkerk, Max ; Mooij, Wolf M. ; Herman, Peter M. J.</creator><creatorcontrib>van de Koppel, Johan ; Gascoigne, Joanna C. ; Theraulaz, Guy ; Rietkerk, Max ; Mooij, Wolf M. ; Herman, Peter M. J.</creatorcontrib><description>Spatial self-organization is the main theoretical explanation for the global occurrence of regular or otherwise coherent spatial patterns in ecosystems. Using mussel beds as a model ecosystem, we provide an experimental demonstration of spatial self-organization. Under homogeneous laboratory conditions, mussels developed regular patterns, similar to those in the field. An individual-based model derived from our experiments showed that interactions between individuals explained the observed patterns. Furthermore, a field study showed that pattern formation affected ecosystem-level processes in terms of improved growth and resistance to wave action. Our results imply that spatial self-organization is an important determinant of the structure and functioning of ecosystems, and it needs to be considered in their conservation.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1163952</identifier><identifier>PMID: 18974353</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Association for the Advancement of Science</publisher><subject>Animal and plant ecology ; Animal, plant and microbial ecology ; Animals ; Aquatic ecosystems ; Biogeography ; Biological and medical sciences ; Biomass ; Bivalvia ; Bivalvia - physiology ; Ecology ; Ecosystem ; Ecosystem models ; Ecosystems ; Environmental conservation ; Food movements ; Fundamental and applied biological sciences. Psychology ; Marine ; Marine ecology ; Modeling ; Models, Biological ; Mollusks ; Movement ; Mussels ; Population Dynamics ; Sea water ecosystems ; Spatial Behavior ; Synecology ; Theory ; Wales</subject><ispartof>Science (American Association for the Advancement of Science), 2008-10, Vol.322 (5902), p.739-742</ispartof><rights>Copyright 2008 American Association for the Advancement of Science</rights><rights>2008 INIST-CNRS</rights><rights>Copyright © 2008, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c605t-31952e5099f16ced09c2e3411df376e594fd2d61c27b523d6e1347494b7c3ffc3</citedby><cites>FETCH-LOGICAL-c605t-31952e5099f16ced09c2e3411df376e594fd2d61c27b523d6e1347494b7c3ffc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20145175$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20145175$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,2871,2872,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20846738$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18974353$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>van de Koppel, Johan</creatorcontrib><creatorcontrib>Gascoigne, Joanna C.</creatorcontrib><creatorcontrib>Theraulaz, Guy</creatorcontrib><creatorcontrib>Rietkerk, Max</creatorcontrib><creatorcontrib>Mooij, Wolf M.</creatorcontrib><creatorcontrib>Herman, Peter M. J.</creatorcontrib><title>Experimental Evidence for Spatial Self-Organization and Its Emergent Effects in Mussel Bed Ecosystems</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Spatial self-organization is the main theoretical explanation for the global occurrence of regular or otherwise coherent spatial patterns in ecosystems. Using mussel beds as a model ecosystem, we provide an experimental demonstration of spatial self-organization. Under homogeneous laboratory conditions, mussels developed regular patterns, similar to those in the field. An individual-based model derived from our experiments showed that interactions between individuals explained the observed patterns. Furthermore, a field study showed that pattern formation affected ecosystem-level processes in terms of improved growth and resistance to wave action. Our results imply that spatial self-organization is an important determinant of the structure and functioning of ecosystems, and it needs to be considered in their conservation.</description><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Animals</subject><subject>Aquatic ecosystems</subject><subject>Biogeography</subject><subject>Biological and medical sciences</subject><subject>Biomass</subject><subject>Bivalvia</subject><subject>Bivalvia - physiology</subject><subject>Ecology</subject><subject>Ecosystem</subject><subject>Ecosystem models</subject><subject>Ecosystems</subject><subject>Environmental conservation</subject><subject>Food movements</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Marine</subject><subject>Marine ecology</subject><subject>Modeling</subject><subject>Models, Biological</subject><subject>Mollusks</subject><subject>Movement</subject><subject>Mussels</subject><subject>Population Dynamics</subject><subject>Sea water ecosystems</subject><subject>Spatial Behavior</subject><subject>Synecology</subject><subject>Theory</subject><subject>Wales</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1v1DAQxS0EosvCmRPIQgJOof52fIQqQKWiHgrnyGuPq6wSZ7GTivavr6ONAHGgJ8tvfvOkNw-hl5R8oJSp0-w6iA7KR3Ej2SO0ocTIyjDCH6MNIVxVNdHyBD3LeU9ImRn-FJ3Q2mjBJd8gaH4dIHUDxMn2uLnp_OKHw5jw1cFOXRGvoA_VZbq2sbsryhixjR6fTxk3A6TrsombEMAVoYv425wz9PgTeNy4Md_mCYb8HD0Jts_wYn236Mfn5vvZ1-ri8sv52ceLyikip4rTkgEkMSZQ5cAT4xhwQakPXCuQRgTPvKKO6Z1k3CugXGhhxE47HoLjW_T-6HtI488Z8tQOXXbQ9zbCOOd2Ca1rwepCvvsvqYzmtVHiQZBRbgwR-kGQGiUFKUffojf_gPtxTrHcZTErBUmzQKdHyKUx5wShPZSWbLptKWmX6tu1-natvmy8Xm3n3QD-D792XYC3K2Czs31INrou_-YYqYUqoQv36sjt8zSmv-ZUSKolvwe4H8Aq</recordid><startdate>20081031</startdate><enddate>20081031</enddate><creator>van de Koppel, Johan</creator><creator>Gascoigne, Joanna C.</creator><creator>Theraulaz, Guy</creator><creator>Rietkerk, Max</creator><creator>Mooij, Wolf M.</creator><creator>Herman, Peter M. J.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7QH</scope><scope>7ST</scope><scope>7TN</scope><scope>7U6</scope><scope>7UA</scope><scope>F1W</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>7X8</scope></search><sort><creationdate>20081031</creationdate><title>Experimental Evidence for Spatial Self-Organization and Its Emergent Effects in Mussel Bed Ecosystems</title><author>van de Koppel, Johan ; Gascoigne, Joanna C. ; Theraulaz, Guy ; Rietkerk, Max ; Mooij, Wolf M. ; Herman, Peter M. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c605t-31952e5099f16ced09c2e3411df376e594fd2d61c27b523d6e1347494b7c3ffc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Animals</topic><topic>Aquatic ecosystems</topic><topic>Biogeography</topic><topic>Biological and medical sciences</topic><topic>Biomass</topic><topic>Bivalvia</topic><topic>Bivalvia - physiology</topic><topic>Ecology</topic><topic>Ecosystem</topic><topic>Ecosystem models</topic><topic>Ecosystems</topic><topic>Environmental conservation</topic><topic>Food movements</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Marine</topic><topic>Marine ecology</topic><topic>Modeling</topic><topic>Models, Biological</topic><topic>Mollusks</topic><topic>Movement</topic><topic>Mussels</topic><topic>Population Dynamics</topic><topic>Sea water ecosystems</topic><topic>Spatial Behavior</topic><topic>Synecology</topic><topic>Theory</topic><topic>Wales</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van de Koppel, Johan</creatorcontrib><creatorcontrib>Gascoigne, Joanna C.</creatorcontrib><creatorcontrib>Theraulaz, Guy</creatorcontrib><creatorcontrib>Rietkerk, Max</creatorcontrib><creatorcontrib>Mooij, Wolf M.</creatorcontrib><creatorcontrib>Herman, Peter M. J.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van de Koppel, Johan</au><au>Gascoigne, Joanna C.</au><au>Theraulaz, Guy</au><au>Rietkerk, Max</au><au>Mooij, Wolf M.</au><au>Herman, Peter M. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental Evidence for Spatial Self-Organization and Its Emergent Effects in Mussel Bed Ecosystems</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2008-10-31</date><risdate>2008</risdate><volume>322</volume><issue>5902</issue><spage>739</spage><epage>742</epage><pages>739-742</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Spatial self-organization is the main theoretical explanation for the global occurrence of regular or otherwise coherent spatial patterns in ecosystems. Using mussel beds as a model ecosystem, we provide an experimental demonstration of spatial self-organization. Under homogeneous laboratory conditions, mussels developed regular patterns, similar to those in the field. An individual-based model derived from our experiments showed that interactions between individuals explained the observed patterns. Furthermore, a field study showed that pattern formation affected ecosystem-level processes in terms of improved growth and resistance to wave action. Our results imply that spatial self-organization is an important determinant of the structure and functioning of ecosystems, and it needs to be considered in their conservation.</abstract><cop>Washington, DC</cop><pub>American Association for the Advancement of Science</pub><pmid>18974353</pmid><doi>10.1126/science.1163952</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2008-10, Vol.322 (5902), p.739-742
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_743578428
source American Association for the Advancement of Science; Jstor Complete Legacy; MEDLINE
subjects Animal and plant ecology
Animal, plant and microbial ecology
Animals
Aquatic ecosystems
Biogeography
Biological and medical sciences
Biomass
Bivalvia
Bivalvia - physiology
Ecology
Ecosystem
Ecosystem models
Ecosystems
Environmental conservation
Food movements
Fundamental and applied biological sciences. Psychology
Marine
Marine ecology
Modeling
Models, Biological
Mollusks
Movement
Mussels
Population Dynamics
Sea water ecosystems
Spatial Behavior
Synecology
Theory
Wales
title Experimental Evidence for Spatial Self-Organization and Its Emergent Effects in Mussel Bed Ecosystems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T15%3A06%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20Evidence%20for%20Spatial%20Self-Organization%20and%20Its%20Emergent%20Effects%20in%20Mussel%20Bed%20Ecosystems&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=van%20de%20Koppel,%20Johan&rft.date=2008-10-31&rft.volume=322&rft.issue=5902&rft.spage=739&rft.epage=742&rft.pages=739-742&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1163952&rft_dat=%3Cjstor_proqu%3E20145175%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213593595&rft_id=info:pmid/18974353&rft_jstor_id=20145175&rfr_iscdi=true