Extreme copulas and the comparison of ordered lists
We introduce two extreme methods to pairwisely compare ordered lists of the same length, viz. the comonotonic and the countermonotonic comparison method, and show that these methods are, respectively, related to the copula TM (the minimum operator) and the L ukasiewicz copula TL used to join margina...
Gespeichert in:
Veröffentlicht in: | Theory and decision 2007-05, Vol.62 (3), p.195-217 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 217 |
---|---|
container_issue | 3 |
container_start_page | 195 |
container_title | Theory and decision |
container_volume | 62 |
creator | DE SCHUYMER, B DE MEYER, H DE BAETS, B |
description | We introduce two extreme methods to pairwisely compare ordered lists of the same length, viz. the comonotonic and the countermonotonic comparison method, and show that these methods are, respectively, related to the copula TM (the minimum operator) and the L ukasiewicz copula TL used to join marginal cumulative distribution functions into bivariate cumulative distribution functions. Given a collection of ordered lists of the same length, we generate by means of TM and TL two probabilistic relations QM and QL and identify their type of transitivity. Finally, it is shown that any probabilistic relation with rational elements on a 3-dimensional space of alternatives which possesses one of these types of transitivity, can be generated by three ordered lists and at least one of the two extreme comparison methods. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.1007/s11238-006-9012-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743577017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>36335283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-e90b31ca56cf4c9c23818336daefc5856c21f040a98ee92ca4f521a197defbd23</originalsourceid><addsrcrecordid>eNqNkU1LAzEQhoMoWKs_wNsiqKdoJt97lFI_oOBFzyHNJrhld1OTXdB_b0oFwYN4GmZ43uGdeRE6B3IDhKjbDECZxoRIXBOgmB-gGQjFsAKtDtGMEE6w0Iwdo5OcN4QQrZWYIbb8GJPvfeXidupsruzQVOPbru-3NrU5DlUMVUyNT76pujaP-RQdBdtlf_Zd5-j1fvmyeMSr54enxd0KO07ViH1N1gycFdIF7mpX_EExIBvrgxO6jCmEYsvW2vuaOsuDoGChVo0P64ayObre792m-D75PJq-zc53nR18nLJRnAmlCKhCXv1JMqk4BSn_ATImaHE5Rxe_wE2c0lDONbR8mkuuSIFgD7kUc04-mG1qe5s-DRCzi8XsYzElFrOLxfCiufxebLOzXUh2cG3-EWrJagaSfQH_IIsH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>212346470</pqid></control><display><type>article</type><title>Extreme copulas and the comparison of ordered lists</title><source>SpringerNature Journals</source><creator>DE SCHUYMER, B ; DE MEYER, H ; DE BAETS, B</creator><creatorcontrib>DE SCHUYMER, B ; DE MEYER, H ; DE BAETS, B</creatorcontrib><description>We introduce two extreme methods to pairwisely compare ordered lists of the same length, viz. the comonotonic and the countermonotonic comparison method, and show that these methods are, respectively, related to the copula TM (the minimum operator) and the L ukasiewicz copula TL used to join marginal cumulative distribution functions into bivariate cumulative distribution functions. Given a collection of ordered lists of the same length, we generate by means of TM and TL two probabilistic relations QM and QL and identify their type of transitivity. Finally, it is shown that any probabilistic relation with rational elements on a 3-dimensional space of alternatives which possesses one of these types of transitivity, can be generated by three ordered lists and at least one of the two extreme comparison methods. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0040-5833</identifier><identifier>EISSN: 1573-7187</identifier><identifier>DOI: 10.1007/s11238-006-9012-4</identifier><identifier>CODEN: THDCBA</identifier><language>eng</language><publisher>Dordrecht: Springer</publisher><subject>Applied sciences ; Comparative studies ; Copula functions ; Decision making ; Decision theory ; Decision theory. Utility theory ; Distribution ; Exact sciences and technology ; Mathematical economics ; Mathematical models ; Numbers ; Operational research and scientific management ; Operational research. Management science ; Probability ; Random variables</subject><ispartof>Theory and decision, 2007-05, Vol.62 (3), p.195-217</ispartof><rights>2007 INIST-CNRS</rights><rights>Springer Science+Business Media B.V. 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-e90b31ca56cf4c9c23818336daefc5856c21f040a98ee92ca4f521a197defbd23</citedby><cites>FETCH-LOGICAL-c427t-e90b31ca56cf4c9c23818336daefc5856c21f040a98ee92ca4f521a197defbd23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18639316$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>DE SCHUYMER, B</creatorcontrib><creatorcontrib>DE MEYER, H</creatorcontrib><creatorcontrib>DE BAETS, B</creatorcontrib><title>Extreme copulas and the comparison of ordered lists</title><title>Theory and decision</title><description>We introduce two extreme methods to pairwisely compare ordered lists of the same length, viz. the comonotonic and the countermonotonic comparison method, and show that these methods are, respectively, related to the copula TM (the minimum operator) and the L ukasiewicz copula TL used to join marginal cumulative distribution functions into bivariate cumulative distribution functions. Given a collection of ordered lists of the same length, we generate by means of TM and TL two probabilistic relations QM and QL and identify their type of transitivity. Finally, it is shown that any probabilistic relation with rational elements on a 3-dimensional space of alternatives which possesses one of these types of transitivity, can be generated by three ordered lists and at least one of the two extreme comparison methods. [PUBLICATION ABSTRACT]</description><subject>Applied sciences</subject><subject>Comparative studies</subject><subject>Copula functions</subject><subject>Decision making</subject><subject>Decision theory</subject><subject>Decision theory. Utility theory</subject><subject>Distribution</subject><subject>Exact sciences and technology</subject><subject>Mathematical economics</subject><subject>Mathematical models</subject><subject>Numbers</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Probability</subject><subject>Random variables</subject><issn>0040-5833</issn><issn>1573-7187</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AVQMV</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>K50</sourceid><sourceid>M1D</sourceid><sourceid>M2O</sourceid><recordid>eNqNkU1LAzEQhoMoWKs_wNsiqKdoJt97lFI_oOBFzyHNJrhld1OTXdB_b0oFwYN4GmZ43uGdeRE6B3IDhKjbDECZxoRIXBOgmB-gGQjFsAKtDtGMEE6w0Iwdo5OcN4QQrZWYIbb8GJPvfeXidupsruzQVOPbru-3NrU5DlUMVUyNT76pujaP-RQdBdtlf_Zd5-j1fvmyeMSr54enxd0KO07ViH1N1gycFdIF7mpX_EExIBvrgxO6jCmEYsvW2vuaOsuDoGChVo0P64ayObre792m-D75PJq-zc53nR18nLJRnAmlCKhCXv1JMqk4BSn_ATImaHE5Rxe_wE2c0lDONbR8mkuuSIFgD7kUc04-mG1qe5s-DRCzi8XsYzElFrOLxfCiufxebLOzXUh2cG3-EWrJagaSfQH_IIsH</recordid><startdate>20070501</startdate><enddate>20070501</enddate><creator>DE SCHUYMER, B</creator><creator>DE MEYER, H</creator><creator>DE BAETS, B</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88G</scope><scope>88J</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>AABKS</scope><scope>ABJCF</scope><scope>ABSDQ</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AVQMV</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>JQ2</scope><scope>K50</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M1D</scope><scope>M2M</scope><scope>M2O</scope><scope>M2R</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20070501</creationdate><title>Extreme copulas and the comparison of ordered lists</title><author>DE SCHUYMER, B ; DE MEYER, H ; DE BAETS, B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-e90b31ca56cf4c9c23818336daefc5856c21f040a98ee92ca4f521a197defbd23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Comparative studies</topic><topic>Copula functions</topic><topic>Decision making</topic><topic>Decision theory</topic><topic>Decision theory. Utility theory</topic><topic>Distribution</topic><topic>Exact sciences and technology</topic><topic>Mathematical economics</topic><topic>Mathematical models</topic><topic>Numbers</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Probability</topic><topic>Random variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DE SCHUYMER, B</creatorcontrib><creatorcontrib>DE MEYER, H</creatorcontrib><creatorcontrib>DE BAETS, B</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Philosophy Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>Philosophy Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Arts Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Art, Design & Architecture Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Arts & Humanities Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Social Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Theory and decision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DE SCHUYMER, B</au><au>DE MEYER, H</au><au>DE BAETS, B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extreme copulas and the comparison of ordered lists</atitle><jtitle>Theory and decision</jtitle><date>2007-05-01</date><risdate>2007</risdate><volume>62</volume><issue>3</issue><spage>195</spage><epage>217</epage><pages>195-217</pages><issn>0040-5833</issn><eissn>1573-7187</eissn><coden>THDCBA</coden><abstract>We introduce two extreme methods to pairwisely compare ordered lists of the same length, viz. the comonotonic and the countermonotonic comparison method, and show that these methods are, respectively, related to the copula TM (the minimum operator) and the L ukasiewicz copula TL used to join marginal cumulative distribution functions into bivariate cumulative distribution functions. Given a collection of ordered lists of the same length, we generate by means of TM and TL two probabilistic relations QM and QL and identify their type of transitivity. Finally, it is shown that any probabilistic relation with rational elements on a 3-dimensional space of alternatives which possesses one of these types of transitivity, can be generated by three ordered lists and at least one of the two extreme comparison methods. [PUBLICATION ABSTRACT]</abstract><cop>Dordrecht</cop><pub>Springer</pub><doi>10.1007/s11238-006-9012-4</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-5833 |
ispartof | Theory and decision, 2007-05, Vol.62 (3), p.195-217 |
issn | 0040-5833 1573-7187 |
language | eng |
recordid | cdi_proquest_miscellaneous_743577017 |
source | SpringerNature Journals |
subjects | Applied sciences Comparative studies Copula functions Decision making Decision theory Decision theory. Utility theory Distribution Exact sciences and technology Mathematical economics Mathematical models Numbers Operational research and scientific management Operational research. Management science Probability Random variables |
title | Extreme copulas and the comparison of ordered lists |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A20%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extreme%20copulas%20and%20the%20comparison%20of%20ordered%20lists&rft.jtitle=Theory%20and%20decision&rft.au=DE%20SCHUYMER,%20B&rft.date=2007-05-01&rft.volume=62&rft.issue=3&rft.spage=195&rft.epage=217&rft.pages=195-217&rft.issn=0040-5833&rft.eissn=1573-7187&rft.coden=THDCBA&rft_id=info:doi/10.1007/s11238-006-9012-4&rft_dat=%3Cproquest_cross%3E36335283%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=212346470&rft_id=info:pmid/&rfr_iscdi=true |