Extreme copulas and the comparison of ordered lists

We introduce two extreme methods to pairwisely compare ordered lists of the same length, viz. the comonotonic and the countermonotonic comparison method, and show that these methods are, respectively, related to the copula TM (the minimum operator) and the L ukasiewicz copula TL used to join margina...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theory and decision 2007-05, Vol.62 (3), p.195-217
Hauptverfasser: DE SCHUYMER, B, DE MEYER, H, DE BAETS, B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 217
container_issue 3
container_start_page 195
container_title Theory and decision
container_volume 62
creator DE SCHUYMER, B
DE MEYER, H
DE BAETS, B
description We introduce two extreme methods to pairwisely compare ordered lists of the same length, viz. the comonotonic and the countermonotonic comparison method, and show that these methods are, respectively, related to the copula TM (the minimum operator) and the L ukasiewicz copula TL used to join marginal cumulative distribution functions into bivariate cumulative distribution functions. Given a collection of ordered lists of the same length, we generate by means of TM and TL two probabilistic relations QM and QL and identify their type of transitivity. Finally, it is shown that any probabilistic relation with rational elements on a 3-dimensional space of alternatives which possesses one of these types of transitivity, can be generated by three ordered lists and at least one of the two extreme comparison methods. [PUBLICATION ABSTRACT]
doi_str_mv 10.1007/s11238-006-9012-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743577017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>36335283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-e90b31ca56cf4c9c23818336daefc5856c21f040a98ee92ca4f521a197defbd23</originalsourceid><addsrcrecordid>eNqNkU1LAzEQhoMoWKs_wNsiqKdoJt97lFI_oOBFzyHNJrhld1OTXdB_b0oFwYN4GmZ43uGdeRE6B3IDhKjbDECZxoRIXBOgmB-gGQjFsAKtDtGMEE6w0Iwdo5OcN4QQrZWYIbb8GJPvfeXidupsruzQVOPbru-3NrU5DlUMVUyNT76pujaP-RQdBdtlf_Zd5-j1fvmyeMSr54enxd0KO07ViH1N1gycFdIF7mpX_EExIBvrgxO6jCmEYsvW2vuaOsuDoGChVo0P64ayObre792m-D75PJq-zc53nR18nLJRnAmlCKhCXv1JMqk4BSn_ATImaHE5Rxe_wE2c0lDONbR8mkuuSIFgD7kUc04-mG1qe5s-DRCzi8XsYzElFrOLxfCiufxebLOzXUh2cG3-EWrJagaSfQH_IIsH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>212346470</pqid></control><display><type>article</type><title>Extreme copulas and the comparison of ordered lists</title><source>SpringerNature Journals</source><creator>DE SCHUYMER, B ; DE MEYER, H ; DE BAETS, B</creator><creatorcontrib>DE SCHUYMER, B ; DE MEYER, H ; DE BAETS, B</creatorcontrib><description>We introduce two extreme methods to pairwisely compare ordered lists of the same length, viz. the comonotonic and the countermonotonic comparison method, and show that these methods are, respectively, related to the copula TM (the minimum operator) and the L ukasiewicz copula TL used to join marginal cumulative distribution functions into bivariate cumulative distribution functions. Given a collection of ordered lists of the same length, we generate by means of TM and TL two probabilistic relations QM and QL and identify their type of transitivity. Finally, it is shown that any probabilistic relation with rational elements on a 3-dimensional space of alternatives which possesses one of these types of transitivity, can be generated by three ordered lists and at least one of the two extreme comparison methods. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0040-5833</identifier><identifier>EISSN: 1573-7187</identifier><identifier>DOI: 10.1007/s11238-006-9012-4</identifier><identifier>CODEN: THDCBA</identifier><language>eng</language><publisher>Dordrecht: Springer</publisher><subject>Applied sciences ; Comparative studies ; Copula functions ; Decision making ; Decision theory ; Decision theory. Utility theory ; Distribution ; Exact sciences and technology ; Mathematical economics ; Mathematical models ; Numbers ; Operational research and scientific management ; Operational research. Management science ; Probability ; Random variables</subject><ispartof>Theory and decision, 2007-05, Vol.62 (3), p.195-217</ispartof><rights>2007 INIST-CNRS</rights><rights>Springer Science+Business Media B.V. 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-e90b31ca56cf4c9c23818336daefc5856c21f040a98ee92ca4f521a197defbd23</citedby><cites>FETCH-LOGICAL-c427t-e90b31ca56cf4c9c23818336daefc5856c21f040a98ee92ca4f521a197defbd23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18639316$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>DE SCHUYMER, B</creatorcontrib><creatorcontrib>DE MEYER, H</creatorcontrib><creatorcontrib>DE BAETS, B</creatorcontrib><title>Extreme copulas and the comparison of ordered lists</title><title>Theory and decision</title><description>We introduce two extreme methods to pairwisely compare ordered lists of the same length, viz. the comonotonic and the countermonotonic comparison method, and show that these methods are, respectively, related to the copula TM (the minimum operator) and the L ukasiewicz copula TL used to join marginal cumulative distribution functions into bivariate cumulative distribution functions. Given a collection of ordered lists of the same length, we generate by means of TM and TL two probabilistic relations QM and QL and identify their type of transitivity. Finally, it is shown that any probabilistic relation with rational elements on a 3-dimensional space of alternatives which possesses one of these types of transitivity, can be generated by three ordered lists and at least one of the two extreme comparison methods. [PUBLICATION ABSTRACT]</description><subject>Applied sciences</subject><subject>Comparative studies</subject><subject>Copula functions</subject><subject>Decision making</subject><subject>Decision theory</subject><subject>Decision theory. Utility theory</subject><subject>Distribution</subject><subject>Exact sciences and technology</subject><subject>Mathematical economics</subject><subject>Mathematical models</subject><subject>Numbers</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Probability</subject><subject>Random variables</subject><issn>0040-5833</issn><issn>1573-7187</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AVQMV</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>K50</sourceid><sourceid>M1D</sourceid><sourceid>M2O</sourceid><recordid>eNqNkU1LAzEQhoMoWKs_wNsiqKdoJt97lFI_oOBFzyHNJrhld1OTXdB_b0oFwYN4GmZ43uGdeRE6B3IDhKjbDECZxoRIXBOgmB-gGQjFsAKtDtGMEE6w0Iwdo5OcN4QQrZWYIbb8GJPvfeXidupsruzQVOPbru-3NrU5DlUMVUyNT76pujaP-RQdBdtlf_Zd5-j1fvmyeMSr54enxd0KO07ViH1N1gycFdIF7mpX_EExIBvrgxO6jCmEYsvW2vuaOsuDoGChVo0P64ayObre792m-D75PJq-zc53nR18nLJRnAmlCKhCXv1JMqk4BSn_ATImaHE5Rxe_wE2c0lDONbR8mkuuSIFgD7kUc04-mG1qe5s-DRCzi8XsYzElFrOLxfCiufxebLOzXUh2cG3-EWrJagaSfQH_IIsH</recordid><startdate>20070501</startdate><enddate>20070501</enddate><creator>DE SCHUYMER, B</creator><creator>DE MEYER, H</creator><creator>DE BAETS, B</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88G</scope><scope>88J</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>AABKS</scope><scope>ABJCF</scope><scope>ABSDQ</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AVQMV</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>JQ2</scope><scope>K50</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M1D</scope><scope>M2M</scope><scope>M2O</scope><scope>M2R</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20070501</creationdate><title>Extreme copulas and the comparison of ordered lists</title><author>DE SCHUYMER, B ; DE MEYER, H ; DE BAETS, B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-e90b31ca56cf4c9c23818336daefc5856c21f040a98ee92ca4f521a197defbd23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Comparative studies</topic><topic>Copula functions</topic><topic>Decision making</topic><topic>Decision theory</topic><topic>Decision theory. Utility theory</topic><topic>Distribution</topic><topic>Exact sciences and technology</topic><topic>Mathematical economics</topic><topic>Mathematical models</topic><topic>Numbers</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Probability</topic><topic>Random variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DE SCHUYMER, B</creatorcontrib><creatorcontrib>DE MEYER, H</creatorcontrib><creatorcontrib>DE BAETS, B</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Philosophy Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>Philosophy Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Arts Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Art, Design &amp; Architecture Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Arts &amp; Humanities Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Social Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Theory and decision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DE SCHUYMER, B</au><au>DE MEYER, H</au><au>DE BAETS, B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extreme copulas and the comparison of ordered lists</atitle><jtitle>Theory and decision</jtitle><date>2007-05-01</date><risdate>2007</risdate><volume>62</volume><issue>3</issue><spage>195</spage><epage>217</epage><pages>195-217</pages><issn>0040-5833</issn><eissn>1573-7187</eissn><coden>THDCBA</coden><abstract>We introduce two extreme methods to pairwisely compare ordered lists of the same length, viz. the comonotonic and the countermonotonic comparison method, and show that these methods are, respectively, related to the copula TM (the minimum operator) and the L ukasiewicz copula TL used to join marginal cumulative distribution functions into bivariate cumulative distribution functions. Given a collection of ordered lists of the same length, we generate by means of TM and TL two probabilistic relations QM and QL and identify their type of transitivity. Finally, it is shown that any probabilistic relation with rational elements on a 3-dimensional space of alternatives which possesses one of these types of transitivity, can be generated by three ordered lists and at least one of the two extreme comparison methods. [PUBLICATION ABSTRACT]</abstract><cop>Dordrecht</cop><pub>Springer</pub><doi>10.1007/s11238-006-9012-4</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-5833
ispartof Theory and decision, 2007-05, Vol.62 (3), p.195-217
issn 0040-5833
1573-7187
language eng
recordid cdi_proquest_miscellaneous_743577017
source SpringerNature Journals
subjects Applied sciences
Comparative studies
Copula functions
Decision making
Decision theory
Decision theory. Utility theory
Distribution
Exact sciences and technology
Mathematical economics
Mathematical models
Numbers
Operational research and scientific management
Operational research. Management science
Probability
Random variables
title Extreme copulas and the comparison of ordered lists
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A20%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extreme%20copulas%20and%20the%20comparison%20of%20ordered%20lists&rft.jtitle=Theory%20and%20decision&rft.au=DE%20SCHUYMER,%20B&rft.date=2007-05-01&rft.volume=62&rft.issue=3&rft.spage=195&rft.epage=217&rft.pages=195-217&rft.issn=0040-5833&rft.eissn=1573-7187&rft.coden=THDCBA&rft_id=info:doi/10.1007/s11238-006-9012-4&rft_dat=%3Cproquest_cross%3E36335283%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=212346470&rft_id=info:pmid/&rfr_iscdi=true