X-ray-diffraction characterization of Pt(111) surface nanopatterning induced by C60 adsorption
Understanding the adsorption mechanisms of large molecules on metal surfaces is a demanding task. Theoretical predictions are difficult because of the large number of atoms that have to be considered in the calculations, and experiments aiming to solve the molecule–substrate interaction geometry are...
Gespeichert in:
Veröffentlicht in: | Nature materials 2005-09, Vol.4 (9), p.688-692 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 692 |
---|---|
container_issue | 9 |
container_start_page | 688 |
container_title | Nature materials |
container_volume | 4 |
creator | Felici, Roberto Pedio, Maddalena Borgatti, Francesco Iannotta, Salvatore Capozi, Mario Ciullo, Giuseppe Stierle, Andreas |
description | Understanding the adsorption mechanisms of large molecules on metal surfaces is a demanding task. Theoretical predictions are difficult because of the large number of atoms that have to be considered in the calculations, and experiments aiming to solve the molecule–substrate interaction geometry are almost impossible with standard laboratory techniques. Here, we show that the adsorption of complex organic molecules can induce perfectly ordered nanostructuring of metal surfaces. We use surface X-ray diffraction to investigate in detail the bonding geometry of C
60
with the Pt(111) surface, and to elucidate the interaction mechanism leading to the restructuring of the Pt(111) surface. The chemical interaction between one monolayer of C
60
molecules and the clean Pt(111) surface results in the formation of an ordered
reconstruction based on the creation of a surface vacancy lattice. The C
60
molecules are located on top of the vacancies, and 12 covalent bonds are formed between the carbon atoms and the 6 platinum surface atoms around the vacancies. In-plane displacements induced on the platinum substrate are of the order of a few picometres in the top layer, and are undetectable in the deeper layers. |
doi_str_mv | 10.1038/nmat1456 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743576134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68546288</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3866-e9930d21661dfa5125c821a23902c10cca872ccec530d570d4a7501e736f37d3</originalsourceid><addsrcrecordid>eNqF0ctKAzEUBuAginfwCWRwoXUxmpPLSbqU4g0EXbhw5RCTjI60mZrMLOrTm9qKoKCrHJIvfwg_IXtAT4ByfRompgMhcYVsglBYCkS6upwBGNsgWym9UspASlwnG4AAHDXbJI8PZTSz0jV1HY3tmjYU9sXMRx-bd_O50dbFXTcAgOMi9bE21hfBhHZquoxCE56LJrjeelc8zYoR0sK41Mbp_O4OWavNOPnd5bpN7i_O70dX5c3t5fXo7Ka0XCOWfjjk1DFABFcbCUxazcAwPqTMArXWaMWs9VZmJhV1wihJwSuONVeOb5OjRew0tm-9T101aZL147EJvu1TpQSXCoGLLA__lKilQKb1v5BpEEMqMMODH_C17WPIv60YY0oKwXhGgwWysU0p-rqaxmZi4qwCWs0rrL4qzHR_mdc_Tbz7hsvOMjhegJSPwrOP3w_-CvsAHIeihQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222754423</pqid></control><display><type>article</type><title>X-ray-diffraction characterization of Pt(111) surface nanopatterning induced by C60 adsorption</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Felici, Roberto ; Pedio, Maddalena ; Borgatti, Francesco ; Iannotta, Salvatore ; Capozi, Mario ; Ciullo, Giuseppe ; Stierle, Andreas</creator><creatorcontrib>Felici, Roberto ; Pedio, Maddalena ; Borgatti, Francesco ; Iannotta, Salvatore ; Capozi, Mario ; Ciullo, Giuseppe ; Stierle, Andreas</creatorcontrib><description>Understanding the adsorption mechanisms of large molecules on metal surfaces is a demanding task. Theoretical predictions are difficult because of the large number of atoms that have to be considered in the calculations, and experiments aiming to solve the molecule–substrate interaction geometry are almost impossible with standard laboratory techniques. Here, we show that the adsorption of complex organic molecules can induce perfectly ordered nanostructuring of metal surfaces. We use surface X-ray diffraction to investigate in detail the bonding geometry of C
60
with the Pt(111) surface, and to elucidate the interaction mechanism leading to the restructuring of the Pt(111) surface. The chemical interaction between one monolayer of C
60
molecules and the clean Pt(111) surface results in the formation of an ordered
reconstruction based on the creation of a surface vacancy lattice. The C
60
molecules are located on top of the vacancies, and 12 covalent bonds are formed between the carbon atoms and the 6 platinum surface atoms around the vacancies. In-plane displacements induced on the platinum substrate are of the order of a few picometres in the top layer, and are undetectable in the deeper layers.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat1456</identifier><identifier>PMID: 16113682</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Adsorption ; Biomaterials ; Chemistry and Materials Science ; Coated Materials, Biocompatible - analysis ; Coated Materials, Biocompatible - chemistry ; Condensed Matter Physics ; Fullerenes - analysis ; Fullerenes - chemistry ; Materials Science ; Materials Testing - methods ; Metals ; Molecular Conformation ; Nanostructures - analysis ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Nanotechnology ; Optical and Electronic Materials ; Platinum ; Platinum - analysis ; Platinum - chemistry ; Substrates ; X-ray diffraction ; X-Ray Diffraction - methods</subject><ispartof>Nature materials, 2005-09, Vol.4 (9), p.688-692</ispartof><rights>Springer Nature Limited 2005</rights><rights>Copyright Nature Publishing Group Sep 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3866-e9930d21661dfa5125c821a23902c10cca872ccec530d570d4a7501e736f37d3</citedby><cites>FETCH-LOGICAL-c3866-e9930d21661dfa5125c821a23902c10cca872ccec530d570d4a7501e736f37d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmat1456$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmat1456$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16113682$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Felici, Roberto</creatorcontrib><creatorcontrib>Pedio, Maddalena</creatorcontrib><creatorcontrib>Borgatti, Francesco</creatorcontrib><creatorcontrib>Iannotta, Salvatore</creatorcontrib><creatorcontrib>Capozi, Mario</creatorcontrib><creatorcontrib>Ciullo, Giuseppe</creatorcontrib><creatorcontrib>Stierle, Andreas</creatorcontrib><title>X-ray-diffraction characterization of Pt(111) surface nanopatterning induced by C60 adsorption</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>Understanding the adsorption mechanisms of large molecules on metal surfaces is a demanding task. Theoretical predictions are difficult because of the large number of atoms that have to be considered in the calculations, and experiments aiming to solve the molecule–substrate interaction geometry are almost impossible with standard laboratory techniques. Here, we show that the adsorption of complex organic molecules can induce perfectly ordered nanostructuring of metal surfaces. We use surface X-ray diffraction to investigate in detail the bonding geometry of C
60
with the Pt(111) surface, and to elucidate the interaction mechanism leading to the restructuring of the Pt(111) surface. The chemical interaction between one monolayer of C
60
molecules and the clean Pt(111) surface results in the formation of an ordered
reconstruction based on the creation of a surface vacancy lattice. The C
60
molecules are located on top of the vacancies, and 12 covalent bonds are formed between the carbon atoms and the 6 platinum surface atoms around the vacancies. In-plane displacements induced on the platinum substrate are of the order of a few picometres in the top layer, and are undetectable in the deeper layers.</description><subject>Adsorption</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Coated Materials, Biocompatible - analysis</subject><subject>Coated Materials, Biocompatible - chemistry</subject><subject>Condensed Matter Physics</subject><subject>Fullerenes - analysis</subject><subject>Fullerenes - chemistry</subject><subject>Materials Science</subject><subject>Materials Testing - methods</subject><subject>Metals</subject><subject>Molecular Conformation</subject><subject>Nanostructures - analysis</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Platinum</subject><subject>Platinum - analysis</subject><subject>Platinum - chemistry</subject><subject>Substrates</subject><subject>X-ray diffraction</subject><subject>X-Ray Diffraction - methods</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqF0ctKAzEUBuAginfwCWRwoXUxmpPLSbqU4g0EXbhw5RCTjI60mZrMLOrTm9qKoKCrHJIvfwg_IXtAT4ByfRompgMhcYVsglBYCkS6upwBGNsgWym9UspASlwnG4AAHDXbJI8PZTSz0jV1HY3tmjYU9sXMRx-bd_O50dbFXTcAgOMi9bE21hfBhHZquoxCE56LJrjeelc8zYoR0sK41Mbp_O4OWavNOPnd5bpN7i_O70dX5c3t5fXo7Ka0XCOWfjjk1DFABFcbCUxazcAwPqTMArXWaMWs9VZmJhV1wihJwSuONVeOb5OjRew0tm-9T101aZL147EJvu1TpQSXCoGLLA__lKilQKb1v5BpEEMqMMODH_C17WPIv60YY0oKwXhGgwWysU0p-rqaxmZi4qwCWs0rrL4qzHR_mdc_Tbz7hsvOMjhegJSPwrOP3w_-CvsAHIeihQ</recordid><startdate>20050901</startdate><enddate>20050901</enddate><creator>Felici, Roberto</creator><creator>Pedio, Maddalena</creator><creator>Borgatti, Francesco</creator><creator>Iannotta, Salvatore</creator><creator>Capozi, Mario</creator><creator>Ciullo, Giuseppe</creator><creator>Stierle, Andreas</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7U5</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20050901</creationdate><title>X-ray-diffraction characterization of Pt(111) surface nanopatterning induced by C60 adsorption</title><author>Felici, Roberto ; Pedio, Maddalena ; Borgatti, Francesco ; Iannotta, Salvatore ; Capozi, Mario ; Ciullo, Giuseppe ; Stierle, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3866-e9930d21661dfa5125c821a23902c10cca872ccec530d570d4a7501e736f37d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Adsorption</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Coated Materials, Biocompatible - analysis</topic><topic>Coated Materials, Biocompatible - chemistry</topic><topic>Condensed Matter Physics</topic><topic>Fullerenes - analysis</topic><topic>Fullerenes - chemistry</topic><topic>Materials Science</topic><topic>Materials Testing - methods</topic><topic>Metals</topic><topic>Molecular Conformation</topic><topic>Nanostructures - analysis</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Platinum</topic><topic>Platinum - analysis</topic><topic>Platinum - chemistry</topic><topic>Substrates</topic><topic>X-ray diffraction</topic><topic>X-Ray Diffraction - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Felici, Roberto</creatorcontrib><creatorcontrib>Pedio, Maddalena</creatorcontrib><creatorcontrib>Borgatti, Francesco</creatorcontrib><creatorcontrib>Iannotta, Salvatore</creatorcontrib><creatorcontrib>Capozi, Mario</creatorcontrib><creatorcontrib>Ciullo, Giuseppe</creatorcontrib><creatorcontrib>Stierle, Andreas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Felici, Roberto</au><au>Pedio, Maddalena</au><au>Borgatti, Francesco</au><au>Iannotta, Salvatore</au><au>Capozi, Mario</au><au>Ciullo, Giuseppe</au><au>Stierle, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>X-ray-diffraction characterization of Pt(111) surface nanopatterning induced by C60 adsorption</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2005-09-01</date><risdate>2005</risdate><volume>4</volume><issue>9</issue><spage>688</spage><epage>692</epage><pages>688-692</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Understanding the adsorption mechanisms of large molecules on metal surfaces is a demanding task. Theoretical predictions are difficult because of the large number of atoms that have to be considered in the calculations, and experiments aiming to solve the molecule–substrate interaction geometry are almost impossible with standard laboratory techniques. Here, we show that the adsorption of complex organic molecules can induce perfectly ordered nanostructuring of metal surfaces. We use surface X-ray diffraction to investigate in detail the bonding geometry of C
60
with the Pt(111) surface, and to elucidate the interaction mechanism leading to the restructuring of the Pt(111) surface. The chemical interaction between one monolayer of C
60
molecules and the clean Pt(111) surface results in the formation of an ordered
reconstruction based on the creation of a surface vacancy lattice. The C
60
molecules are located on top of the vacancies, and 12 covalent bonds are formed between the carbon atoms and the 6 platinum surface atoms around the vacancies. In-plane displacements induced on the platinum substrate are of the order of a few picometres in the top layer, and are undetectable in the deeper layers.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>16113682</pmid><doi>10.1038/nmat1456</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2005-09, Vol.4 (9), p.688-692 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_proquest_miscellaneous_743576134 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | Adsorption Biomaterials Chemistry and Materials Science Coated Materials, Biocompatible - analysis Coated Materials, Biocompatible - chemistry Condensed Matter Physics Fullerenes - analysis Fullerenes - chemistry Materials Science Materials Testing - methods Metals Molecular Conformation Nanostructures - analysis Nanostructures - chemistry Nanostructures - ultrastructure Nanotechnology Optical and Electronic Materials Platinum Platinum - analysis Platinum - chemistry Substrates X-ray diffraction X-Ray Diffraction - methods |
title | X-ray-diffraction characterization of Pt(111) surface nanopatterning induced by C60 adsorption |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A18%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=X-ray-diffraction%20characterization%20of%20Pt(111)%20surface%20nanopatterning%20induced%20by%20C60%20adsorption&rft.jtitle=Nature%20materials&rft.au=Felici,%20Roberto&rft.date=2005-09-01&rft.volume=4&rft.issue=9&rft.spage=688&rft.epage=692&rft.pages=688-692&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat1456&rft_dat=%3Cproquest_cross%3E68546288%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222754423&rft_id=info:pmid/16113682&rfr_iscdi=true |