X-ray-diffraction characterization of Pt(111) surface nanopatterning induced by C60 adsorption

Understanding the adsorption mechanisms of large molecules on metal surfaces is a demanding task. Theoretical predictions are difficult because of the large number of atoms that have to be considered in the calculations, and experiments aiming to solve the molecule–substrate interaction geometry are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2005-09, Vol.4 (9), p.688-692
Hauptverfasser: Felici, Roberto, Pedio, Maddalena, Borgatti, Francesco, Iannotta, Salvatore, Capozi, Mario, Ciullo, Giuseppe, Stierle, Andreas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 692
container_issue 9
container_start_page 688
container_title Nature materials
container_volume 4
creator Felici, Roberto
Pedio, Maddalena
Borgatti, Francesco
Iannotta, Salvatore
Capozi, Mario
Ciullo, Giuseppe
Stierle, Andreas
description Understanding the adsorption mechanisms of large molecules on metal surfaces is a demanding task. Theoretical predictions are difficult because of the large number of atoms that have to be considered in the calculations, and experiments aiming to solve the molecule–substrate interaction geometry are almost impossible with standard laboratory techniques. Here, we show that the adsorption of complex organic molecules can induce perfectly ordered nanostructuring of metal surfaces. We use surface X-ray diffraction to investigate in detail the bonding geometry of C 60 with the Pt(111) surface, and to elucidate the interaction mechanism leading to the restructuring of the Pt(111) surface. The chemical interaction between one monolayer of C 60 molecules and the clean Pt(111) surface results in the formation of an ordered reconstruction based on the creation of a surface vacancy lattice. The C 60 molecules are located on top of the vacancies, and 12 covalent bonds are formed between the carbon atoms and the 6 platinum surface atoms around the vacancies. In-plane displacements induced on the platinum substrate are of the order of a few picometres in the top layer, and are undetectable in the deeper layers.
doi_str_mv 10.1038/nmat1456
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743576134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68546288</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3866-e9930d21661dfa5125c821a23902c10cca872ccec530d570d4a7501e736f37d3</originalsourceid><addsrcrecordid>eNqF0ctKAzEUBuAginfwCWRwoXUxmpPLSbqU4g0EXbhw5RCTjI60mZrMLOrTm9qKoKCrHJIvfwg_IXtAT4ByfRompgMhcYVsglBYCkS6upwBGNsgWym9UspASlwnG4AAHDXbJI8PZTSz0jV1HY3tmjYU9sXMRx-bd_O50dbFXTcAgOMi9bE21hfBhHZquoxCE56LJrjeelc8zYoR0sK41Mbp_O4OWavNOPnd5bpN7i_O70dX5c3t5fXo7Ka0XCOWfjjk1DFABFcbCUxazcAwPqTMArXWaMWs9VZmJhV1wihJwSuONVeOb5OjRew0tm-9T101aZL147EJvu1TpQSXCoGLLA__lKilQKb1v5BpEEMqMMODH_C17WPIv60YY0oKwXhGgwWysU0p-rqaxmZi4qwCWs0rrL4qzHR_mdc_Tbz7hsvOMjhegJSPwrOP3w_-CvsAHIeihQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222754423</pqid></control><display><type>article</type><title>X-ray-diffraction characterization of Pt(111) surface nanopatterning induced by C60 adsorption</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Felici, Roberto ; Pedio, Maddalena ; Borgatti, Francesco ; Iannotta, Salvatore ; Capozi, Mario ; Ciullo, Giuseppe ; Stierle, Andreas</creator><creatorcontrib>Felici, Roberto ; Pedio, Maddalena ; Borgatti, Francesco ; Iannotta, Salvatore ; Capozi, Mario ; Ciullo, Giuseppe ; Stierle, Andreas</creatorcontrib><description>Understanding the adsorption mechanisms of large molecules on metal surfaces is a demanding task. Theoretical predictions are difficult because of the large number of atoms that have to be considered in the calculations, and experiments aiming to solve the molecule–substrate interaction geometry are almost impossible with standard laboratory techniques. Here, we show that the adsorption of complex organic molecules can induce perfectly ordered nanostructuring of metal surfaces. We use surface X-ray diffraction to investigate in detail the bonding geometry of C 60 with the Pt(111) surface, and to elucidate the interaction mechanism leading to the restructuring of the Pt(111) surface. The chemical interaction between one monolayer of C 60 molecules and the clean Pt(111) surface results in the formation of an ordered reconstruction based on the creation of a surface vacancy lattice. The C 60 molecules are located on top of the vacancies, and 12 covalent bonds are formed between the carbon atoms and the 6 platinum surface atoms around the vacancies. In-plane displacements induced on the platinum substrate are of the order of a few picometres in the top layer, and are undetectable in the deeper layers.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat1456</identifier><identifier>PMID: 16113682</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Adsorption ; Biomaterials ; Chemistry and Materials Science ; Coated Materials, Biocompatible - analysis ; Coated Materials, Biocompatible - chemistry ; Condensed Matter Physics ; Fullerenes - analysis ; Fullerenes - chemistry ; Materials Science ; Materials Testing - methods ; Metals ; Molecular Conformation ; Nanostructures - analysis ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Nanotechnology ; Optical and Electronic Materials ; Platinum ; Platinum - analysis ; Platinum - chemistry ; Substrates ; X-ray diffraction ; X-Ray Diffraction - methods</subject><ispartof>Nature materials, 2005-09, Vol.4 (9), p.688-692</ispartof><rights>Springer Nature Limited 2005</rights><rights>Copyright Nature Publishing Group Sep 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3866-e9930d21661dfa5125c821a23902c10cca872ccec530d570d4a7501e736f37d3</citedby><cites>FETCH-LOGICAL-c3866-e9930d21661dfa5125c821a23902c10cca872ccec530d570d4a7501e736f37d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmat1456$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmat1456$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16113682$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Felici, Roberto</creatorcontrib><creatorcontrib>Pedio, Maddalena</creatorcontrib><creatorcontrib>Borgatti, Francesco</creatorcontrib><creatorcontrib>Iannotta, Salvatore</creatorcontrib><creatorcontrib>Capozi, Mario</creatorcontrib><creatorcontrib>Ciullo, Giuseppe</creatorcontrib><creatorcontrib>Stierle, Andreas</creatorcontrib><title>X-ray-diffraction characterization of Pt(111) surface nanopatterning induced by C60 adsorption</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>Understanding the adsorption mechanisms of large molecules on metal surfaces is a demanding task. Theoretical predictions are difficult because of the large number of atoms that have to be considered in the calculations, and experiments aiming to solve the molecule–substrate interaction geometry are almost impossible with standard laboratory techniques. Here, we show that the adsorption of complex organic molecules can induce perfectly ordered nanostructuring of metal surfaces. We use surface X-ray diffraction to investigate in detail the bonding geometry of C 60 with the Pt(111) surface, and to elucidate the interaction mechanism leading to the restructuring of the Pt(111) surface. The chemical interaction between one monolayer of C 60 molecules and the clean Pt(111) surface results in the formation of an ordered reconstruction based on the creation of a surface vacancy lattice. The C 60 molecules are located on top of the vacancies, and 12 covalent bonds are formed between the carbon atoms and the 6 platinum surface atoms around the vacancies. In-plane displacements induced on the platinum substrate are of the order of a few picometres in the top layer, and are undetectable in the deeper layers.</description><subject>Adsorption</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Coated Materials, Biocompatible - analysis</subject><subject>Coated Materials, Biocompatible - chemistry</subject><subject>Condensed Matter Physics</subject><subject>Fullerenes - analysis</subject><subject>Fullerenes - chemistry</subject><subject>Materials Science</subject><subject>Materials Testing - methods</subject><subject>Metals</subject><subject>Molecular Conformation</subject><subject>Nanostructures - analysis</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Platinum</subject><subject>Platinum - analysis</subject><subject>Platinum - chemistry</subject><subject>Substrates</subject><subject>X-ray diffraction</subject><subject>X-Ray Diffraction - methods</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqF0ctKAzEUBuAginfwCWRwoXUxmpPLSbqU4g0EXbhw5RCTjI60mZrMLOrTm9qKoKCrHJIvfwg_IXtAT4ByfRompgMhcYVsglBYCkS6upwBGNsgWym9UspASlwnG4AAHDXbJI8PZTSz0jV1HY3tmjYU9sXMRx-bd_O50dbFXTcAgOMi9bE21hfBhHZquoxCE56LJrjeelc8zYoR0sK41Mbp_O4OWavNOPnd5bpN7i_O70dX5c3t5fXo7Ka0XCOWfjjk1DFABFcbCUxazcAwPqTMArXWaMWs9VZmJhV1wihJwSuONVeOb5OjRew0tm-9T101aZL147EJvu1TpQSXCoGLLA__lKilQKb1v5BpEEMqMMODH_C17WPIv60YY0oKwXhGgwWysU0p-rqaxmZi4qwCWs0rrL4qzHR_mdc_Tbz7hsvOMjhegJSPwrOP3w_-CvsAHIeihQ</recordid><startdate>20050901</startdate><enddate>20050901</enddate><creator>Felici, Roberto</creator><creator>Pedio, Maddalena</creator><creator>Borgatti, Francesco</creator><creator>Iannotta, Salvatore</creator><creator>Capozi, Mario</creator><creator>Ciullo, Giuseppe</creator><creator>Stierle, Andreas</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7U5</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20050901</creationdate><title>X-ray-diffraction characterization of Pt(111) surface nanopatterning induced by C60 adsorption</title><author>Felici, Roberto ; Pedio, Maddalena ; Borgatti, Francesco ; Iannotta, Salvatore ; Capozi, Mario ; Ciullo, Giuseppe ; Stierle, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3866-e9930d21661dfa5125c821a23902c10cca872ccec530d570d4a7501e736f37d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Adsorption</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Coated Materials, Biocompatible - analysis</topic><topic>Coated Materials, Biocompatible - chemistry</topic><topic>Condensed Matter Physics</topic><topic>Fullerenes - analysis</topic><topic>Fullerenes - chemistry</topic><topic>Materials Science</topic><topic>Materials Testing - methods</topic><topic>Metals</topic><topic>Molecular Conformation</topic><topic>Nanostructures - analysis</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Platinum</topic><topic>Platinum - analysis</topic><topic>Platinum - chemistry</topic><topic>Substrates</topic><topic>X-ray diffraction</topic><topic>X-Ray Diffraction - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Felici, Roberto</creatorcontrib><creatorcontrib>Pedio, Maddalena</creatorcontrib><creatorcontrib>Borgatti, Francesco</creatorcontrib><creatorcontrib>Iannotta, Salvatore</creatorcontrib><creatorcontrib>Capozi, Mario</creatorcontrib><creatorcontrib>Ciullo, Giuseppe</creatorcontrib><creatorcontrib>Stierle, Andreas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Felici, Roberto</au><au>Pedio, Maddalena</au><au>Borgatti, Francesco</au><au>Iannotta, Salvatore</au><au>Capozi, Mario</au><au>Ciullo, Giuseppe</au><au>Stierle, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>X-ray-diffraction characterization of Pt(111) surface nanopatterning induced by C60 adsorption</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2005-09-01</date><risdate>2005</risdate><volume>4</volume><issue>9</issue><spage>688</spage><epage>692</epage><pages>688-692</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Understanding the adsorption mechanisms of large molecules on metal surfaces is a demanding task. Theoretical predictions are difficult because of the large number of atoms that have to be considered in the calculations, and experiments aiming to solve the molecule–substrate interaction geometry are almost impossible with standard laboratory techniques. Here, we show that the adsorption of complex organic molecules can induce perfectly ordered nanostructuring of metal surfaces. We use surface X-ray diffraction to investigate in detail the bonding geometry of C 60 with the Pt(111) surface, and to elucidate the interaction mechanism leading to the restructuring of the Pt(111) surface. The chemical interaction between one monolayer of C 60 molecules and the clean Pt(111) surface results in the formation of an ordered reconstruction based on the creation of a surface vacancy lattice. The C 60 molecules are located on top of the vacancies, and 12 covalent bonds are formed between the carbon atoms and the 6 platinum surface atoms around the vacancies. In-plane displacements induced on the platinum substrate are of the order of a few picometres in the top layer, and are undetectable in the deeper layers.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>16113682</pmid><doi>10.1038/nmat1456</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2005-09, Vol.4 (9), p.688-692
issn 1476-1122
1476-4660
language eng
recordid cdi_proquest_miscellaneous_743576134
source MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online
subjects Adsorption
Biomaterials
Chemistry and Materials Science
Coated Materials, Biocompatible - analysis
Coated Materials, Biocompatible - chemistry
Condensed Matter Physics
Fullerenes - analysis
Fullerenes - chemistry
Materials Science
Materials Testing - methods
Metals
Molecular Conformation
Nanostructures - analysis
Nanostructures - chemistry
Nanostructures - ultrastructure
Nanotechnology
Optical and Electronic Materials
Platinum
Platinum - analysis
Platinum - chemistry
Substrates
X-ray diffraction
X-Ray Diffraction - methods
title X-ray-diffraction characterization of Pt(111) surface nanopatterning induced by C60 adsorption
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A18%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=X-ray-diffraction%20characterization%20of%20Pt(111)%20surface%20nanopatterning%20induced%20by%20C60%20adsorption&rft.jtitle=Nature%20materials&rft.au=Felici,%20Roberto&rft.date=2005-09-01&rft.volume=4&rft.issue=9&rft.spage=688&rft.epage=692&rft.pages=688-692&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat1456&rft_dat=%3Cproquest_cross%3E68546288%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222754423&rft_id=info:pmid/16113682&rfr_iscdi=true