Evidence for a Canonical Gamma-Ray Burst Afterglow Light Curve in the Swift XRT Data

We present new observations of the early X-ray afterglows of the first 27 gamma-ray bursts (GRBs) well observed by the Swift X-Ray Telescope (XRT). The early X-ray afterglows show a canonical behavior, where the light curve broadly consists of three distinct power-law segments: (1) an initial very s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2006-05, Vol.642 (1), p.389-400
Hauptverfasser: Nousek, J. A, Kouveliotou, C, Grupe, D, Page, K. L, Granot, J, Ramirez-Ruiz, E, Patel, S. K, Burrows, D. N, Mangano, V, Barthelmy, S, Beardmore, A. P, Campana, S, Capalbi, M, Chincarini, G, Cusumano, G, Falcone, A. D, Gehrels, N, Giommi, P, Goad, M. R, Godet, O, Hurkett, C. P, Kennea, J. A, Moretti, A, O’Brien, P. T, Osborne, J. P, Romano, P, Tagliaferri, G, Wells, A. A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 400
container_issue 1
container_start_page 389
container_title The Astrophysical journal
container_volume 642
creator Nousek, J. A
Kouveliotou, C
Grupe, D
Page, K. L
Granot, J
Ramirez-Ruiz, E
Patel, S. K
Burrows, D. N
Mangano, V
Barthelmy, S
Beardmore, A. P
Campana, S
Capalbi, M
Chincarini, G
Cusumano, G
Falcone, A. D
Gehrels, N
Giommi, P
Goad, M. R
Godet, O
Hurkett, C. P
Kennea, J. A
Moretti, A
O’Brien, P. T
Osborne, J. P
Romano, P
Tagliaferri, G
Wells, A. A
description We present new observations of the early X-ray afterglows of the first 27 gamma-ray bursts (GRBs) well observed by the Swift X-Ray Telescope (XRT). The early X-ray afterglows show a canonical behavior, where the light curve broadly consists of three distinct power-law segments: (1) an initial very steep decay (8t super(-a) with 3 a sub(1) 5), followed by (2) a very shallow decay (0.5 a sub(2) 1.0), and finally (3) a somewhat steeper decay (1 a sub(3) 1.5). These power-law segments are separated by two corresponding break times, t sub(break,1) 500 s and 10 super(3) s t sub(break,2) 10 super(4)s. On top of this canonical behavior, many events have superimposed X-ray flares, which are most likely caused by internal shocks due to long-lasting sporadic activity of the central engine, up to several hours after the GRB. We find that the initial steep decay is consistent with it being the tail of the prompt emission, from photons that are radiated at large angles relative to our line of sight. The first break in the light curve (t sub(break,1)) takes place when the forward shock emission becomes dominant, with the intermediate shallow flux decay (a sub(2)) likely caused by the continuous energy injection into the external shock. When this energy injection stops, a second break is then observed in the light curve (t sub(break,2))- This energy injection increases the energy of the afterglow shock by at least a factor of f 4 and augments the already severe requirements for the efficiency of the prompt gamma-ray emission.
doi_str_mv 10.1086/500724
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_miscellaneous_743552216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19474819</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-6a7de43cb55b6a474e3c2510a83b6be2efe53b02ad56a8c9e61a1c21bdab43643</originalsourceid><addsrcrecordid>eNp90V1LwzAUBuAgCs6pvyFeqCBU8532UqdOYSDoBO_CaZpuka6dSbexf2_HREHBqxDycF7yHoSOKbmkJFVXkhDNxA7qUcnTRHCpd1GPECISxfXbPjqI8X1zZVnWQ-O7pS9cbR0um4ABD6Buam-hwkOYzSB5hjW-WYTY4uuydWFSNSs88pNpiweLsHTY17idOvyy8mWL357H-BZaOER7JVTRHX2dffR6fzcePCSjp-Hj4HqUWK51myjQhRPc5lLmCoQWjlsmKYGU5yp3zJVO8pwwKKSC1GZOUaCW0byAXHAleB-db-fOQ_OxcLE1Mx-tqyqoXbOIRnefl4xR1cmzfyXNuviUZj_QhibG4EozD34GYW0oMZt6zbbeDp5-TYTY1VUGqK2PP1qnqgumnbvYOt_Mv1839ZvNNowSzFDD08zMi7LDJ3_xr-BPmE6O4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19474819</pqid></control><display><type>article</type><title>Evidence for a Canonical Gamma-Ray Burst Afterglow Light Curve in the Swift XRT Data</title><source>IOP Publishing Free Content</source><creator>Nousek, J. A ; Kouveliotou, C ; Grupe, D ; Page, K. L ; Granot, J ; Ramirez-Ruiz, E ; Patel, S. K ; Burrows, D. N ; Mangano, V ; Barthelmy, S ; Beardmore, A. P ; Campana, S ; Capalbi, M ; Chincarini, G ; Cusumano, G ; Falcone, A. D ; Gehrels, N ; Giommi, P ; Goad, M. R ; Godet, O ; Hurkett, C. P ; Kennea, J. A ; Moretti, A ; O’Brien, P. T ; Osborne, J. P ; Romano, P ; Tagliaferri, G ; Wells, A. A</creator><creatorcontrib>Nousek, J. A ; Kouveliotou, C ; Grupe, D ; Page, K. L ; Granot, J ; Ramirez-Ruiz, E ; Patel, S. K ; Burrows, D. N ; Mangano, V ; Barthelmy, S ; Beardmore, A. P ; Campana, S ; Capalbi, M ; Chincarini, G ; Cusumano, G ; Falcone, A. D ; Gehrels, N ; Giommi, P ; Goad, M. R ; Godet, O ; Hurkett, C. P ; Kennea, J. A ; Moretti, A ; O’Brien, P. T ; Osborne, J. P ; Romano, P ; Tagliaferri, G ; Wells, A. A</creatorcontrib><description>We present new observations of the early X-ray afterglows of the first 27 gamma-ray bursts (GRBs) well observed by the Swift X-Ray Telescope (XRT). The early X-ray afterglows show a canonical behavior, where the light curve broadly consists of three distinct power-law segments: (1) an initial very steep decay (8t super(-a) with 3 a sub(1) 5), followed by (2) a very shallow decay (0.5 a sub(2) 1.0), and finally (3) a somewhat steeper decay (1 a sub(3) 1.5). These power-law segments are separated by two corresponding break times, t sub(break,1) 500 s and 10 super(3) s t sub(break,2) 10 super(4)s. On top of this canonical behavior, many events have superimposed X-ray flares, which are most likely caused by internal shocks due to long-lasting sporadic activity of the central engine, up to several hours after the GRB. We find that the initial steep decay is consistent with it being the tail of the prompt emission, from photons that are radiated at large angles relative to our line of sight. The first break in the light curve (t sub(break,1)) takes place when the forward shock emission becomes dominant, with the intermediate shallow flux decay (a sub(2)) likely caused by the continuous energy injection into the external shock. When this energy injection stops, a second break is then observed in the light curve (t sub(break,2))- This energy injection increases the energy of the afterglow shock by at least a factor of f 4 and augments the already severe requirements for the efficiency of the prompt gamma-ray emission.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.1086/500724</identifier><identifier>CODEN: ASJOAB</identifier><language>eng</language><publisher>Chicago, IL: IOP Publishing</publisher><subject>Astronomy ; Earth, ocean, space ; Exact sciences and technology</subject><ispartof>The Astrophysical journal, 2006-05, Vol.642 (1), p.389-400</ispartof><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-6a7de43cb55b6a474e3c2510a83b6be2efe53b02ad56a8c9e61a1c21bdab43643</citedby><cites>FETCH-LOGICAL-c377t-6a7de43cb55b6a474e3c2510a83b6be2efe53b02ad56a8c9e61a1c21bdab43643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1086/500724/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27605,27901,27902,53906</link.rule.ids><linktorsrc>$$Uhttp://iopscience.iop.org/0004-637X/642/1/389$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17862161$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nousek, J. A</creatorcontrib><creatorcontrib>Kouveliotou, C</creatorcontrib><creatorcontrib>Grupe, D</creatorcontrib><creatorcontrib>Page, K. L</creatorcontrib><creatorcontrib>Granot, J</creatorcontrib><creatorcontrib>Ramirez-Ruiz, E</creatorcontrib><creatorcontrib>Patel, S. K</creatorcontrib><creatorcontrib>Burrows, D. N</creatorcontrib><creatorcontrib>Mangano, V</creatorcontrib><creatorcontrib>Barthelmy, S</creatorcontrib><creatorcontrib>Beardmore, A. P</creatorcontrib><creatorcontrib>Campana, S</creatorcontrib><creatorcontrib>Capalbi, M</creatorcontrib><creatorcontrib>Chincarini, G</creatorcontrib><creatorcontrib>Cusumano, G</creatorcontrib><creatorcontrib>Falcone, A. D</creatorcontrib><creatorcontrib>Gehrels, N</creatorcontrib><creatorcontrib>Giommi, P</creatorcontrib><creatorcontrib>Goad, M. R</creatorcontrib><creatorcontrib>Godet, O</creatorcontrib><creatorcontrib>Hurkett, C. P</creatorcontrib><creatorcontrib>Kennea, J. A</creatorcontrib><creatorcontrib>Moretti, A</creatorcontrib><creatorcontrib>O’Brien, P. T</creatorcontrib><creatorcontrib>Osborne, J. P</creatorcontrib><creatorcontrib>Romano, P</creatorcontrib><creatorcontrib>Tagliaferri, G</creatorcontrib><creatorcontrib>Wells, A. A</creatorcontrib><title>Evidence for a Canonical Gamma-Ray Burst Afterglow Light Curve in the Swift XRT Data</title><title>The Astrophysical journal</title><description>We present new observations of the early X-ray afterglows of the first 27 gamma-ray bursts (GRBs) well observed by the Swift X-Ray Telescope (XRT). The early X-ray afterglows show a canonical behavior, where the light curve broadly consists of three distinct power-law segments: (1) an initial very steep decay (8t super(-a) with 3 a sub(1) 5), followed by (2) a very shallow decay (0.5 a sub(2) 1.0), and finally (3) a somewhat steeper decay (1 a sub(3) 1.5). These power-law segments are separated by two corresponding break times, t sub(break,1) 500 s and 10 super(3) s t sub(break,2) 10 super(4)s. On top of this canonical behavior, many events have superimposed X-ray flares, which are most likely caused by internal shocks due to long-lasting sporadic activity of the central engine, up to several hours after the GRB. We find that the initial steep decay is consistent with it being the tail of the prompt emission, from photons that are radiated at large angles relative to our line of sight. The first break in the light curve (t sub(break,1)) takes place when the forward shock emission becomes dominant, with the intermediate shallow flux decay (a sub(2)) likely caused by the continuous energy injection into the external shock. When this energy injection stops, a second break is then observed in the light curve (t sub(break,2))- This energy injection increases the energy of the afterglow shock by at least a factor of f 4 and augments the already severe requirements for the efficiency of the prompt gamma-ray emission.</description><subject>Astronomy</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp90V1LwzAUBuAgCs6pvyFeqCBU8532UqdOYSDoBO_CaZpuka6dSbexf2_HREHBqxDycF7yHoSOKbmkJFVXkhDNxA7qUcnTRHCpd1GPECISxfXbPjqI8X1zZVnWQ-O7pS9cbR0um4ABD6Buam-hwkOYzSB5hjW-WYTY4uuydWFSNSs88pNpiweLsHTY17idOvyy8mWL357H-BZaOER7JVTRHX2dffR6fzcePCSjp-Hj4HqUWK51myjQhRPc5lLmCoQWjlsmKYGU5yp3zJVO8pwwKKSC1GZOUaCW0byAXHAleB-db-fOQ_OxcLE1Mx-tqyqoXbOIRnefl4xR1cmzfyXNuviUZj_QhibG4EozD34GYW0oMZt6zbbeDp5-TYTY1VUGqK2PP1qnqgumnbvYOt_Mv1839ZvNNowSzFDD08zMi7LDJ3_xr-BPmE6O4w</recordid><startdate>20060501</startdate><enddate>20060501</enddate><creator>Nousek, J. A</creator><creator>Kouveliotou, C</creator><creator>Grupe, D</creator><creator>Page, K. L</creator><creator>Granot, J</creator><creator>Ramirez-Ruiz, E</creator><creator>Patel, S. K</creator><creator>Burrows, D. N</creator><creator>Mangano, V</creator><creator>Barthelmy, S</creator><creator>Beardmore, A. P</creator><creator>Campana, S</creator><creator>Capalbi, M</creator><creator>Chincarini, G</creator><creator>Cusumano, G</creator><creator>Falcone, A. D</creator><creator>Gehrels, N</creator><creator>Giommi, P</creator><creator>Goad, M. R</creator><creator>Godet, O</creator><creator>Hurkett, C. P</creator><creator>Kennea, J. A</creator><creator>Moretti, A</creator><creator>O’Brien, P. T</creator><creator>Osborne, J. P</creator><creator>Romano, P</creator><creator>Tagliaferri, G</creator><creator>Wells, A. A</creator><general>IOP Publishing</general><general>University of Chicago Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20060501</creationdate><title>Evidence for a Canonical Gamma-Ray Burst Afterglow Light Curve in the Swift XRT Data</title><author>Nousek, J. A ; Kouveliotou, C ; Grupe, D ; Page, K. L ; Granot, J ; Ramirez-Ruiz, E ; Patel, S. K ; Burrows, D. N ; Mangano, V ; Barthelmy, S ; Beardmore, A. P ; Campana, S ; Capalbi, M ; Chincarini, G ; Cusumano, G ; Falcone, A. D ; Gehrels, N ; Giommi, P ; Goad, M. R ; Godet, O ; Hurkett, C. P ; Kennea, J. A ; Moretti, A ; O’Brien, P. T ; Osborne, J. P ; Romano, P ; Tagliaferri, G ; Wells, A. A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-6a7de43cb55b6a474e3c2510a83b6be2efe53b02ad56a8c9e61a1c21bdab43643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Astronomy</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nousek, J. A</creatorcontrib><creatorcontrib>Kouveliotou, C</creatorcontrib><creatorcontrib>Grupe, D</creatorcontrib><creatorcontrib>Page, K. L</creatorcontrib><creatorcontrib>Granot, J</creatorcontrib><creatorcontrib>Ramirez-Ruiz, E</creatorcontrib><creatorcontrib>Patel, S. K</creatorcontrib><creatorcontrib>Burrows, D. N</creatorcontrib><creatorcontrib>Mangano, V</creatorcontrib><creatorcontrib>Barthelmy, S</creatorcontrib><creatorcontrib>Beardmore, A. P</creatorcontrib><creatorcontrib>Campana, S</creatorcontrib><creatorcontrib>Capalbi, M</creatorcontrib><creatorcontrib>Chincarini, G</creatorcontrib><creatorcontrib>Cusumano, G</creatorcontrib><creatorcontrib>Falcone, A. D</creatorcontrib><creatorcontrib>Gehrels, N</creatorcontrib><creatorcontrib>Giommi, P</creatorcontrib><creatorcontrib>Goad, M. R</creatorcontrib><creatorcontrib>Godet, O</creatorcontrib><creatorcontrib>Hurkett, C. P</creatorcontrib><creatorcontrib>Kennea, J. A</creatorcontrib><creatorcontrib>Moretti, A</creatorcontrib><creatorcontrib>O’Brien, P. T</creatorcontrib><creatorcontrib>Osborne, J. P</creatorcontrib><creatorcontrib>Romano, P</creatorcontrib><creatorcontrib>Tagliaferri, G</creatorcontrib><creatorcontrib>Wells, A. A</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nousek, J. A</au><au>Kouveliotou, C</au><au>Grupe, D</au><au>Page, K. L</au><au>Granot, J</au><au>Ramirez-Ruiz, E</au><au>Patel, S. K</au><au>Burrows, D. N</au><au>Mangano, V</au><au>Barthelmy, S</au><au>Beardmore, A. P</au><au>Campana, S</au><au>Capalbi, M</au><au>Chincarini, G</au><au>Cusumano, G</au><au>Falcone, A. D</au><au>Gehrels, N</au><au>Giommi, P</au><au>Goad, M. R</au><au>Godet, O</au><au>Hurkett, C. P</au><au>Kennea, J. A</au><au>Moretti, A</au><au>O’Brien, P. T</au><au>Osborne, J. P</au><au>Romano, P</au><au>Tagliaferri, G</au><au>Wells, A. A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evidence for a Canonical Gamma-Ray Burst Afterglow Light Curve in the Swift XRT Data</atitle><jtitle>The Astrophysical journal</jtitle><date>2006-05-01</date><risdate>2006</risdate><volume>642</volume><issue>1</issue><spage>389</spage><epage>400</epage><pages>389-400</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><coden>ASJOAB</coden><abstract>We present new observations of the early X-ray afterglows of the first 27 gamma-ray bursts (GRBs) well observed by the Swift X-Ray Telescope (XRT). The early X-ray afterglows show a canonical behavior, where the light curve broadly consists of three distinct power-law segments: (1) an initial very steep decay (8t super(-a) with 3 a sub(1) 5), followed by (2) a very shallow decay (0.5 a sub(2) 1.0), and finally (3) a somewhat steeper decay (1 a sub(3) 1.5). These power-law segments are separated by two corresponding break times, t sub(break,1) 500 s and 10 super(3) s t sub(break,2) 10 super(4)s. On top of this canonical behavior, many events have superimposed X-ray flares, which are most likely caused by internal shocks due to long-lasting sporadic activity of the central engine, up to several hours after the GRB. We find that the initial steep decay is consistent with it being the tail of the prompt emission, from photons that are radiated at large angles relative to our line of sight. The first break in the light curve (t sub(break,1)) takes place when the forward shock emission becomes dominant, with the intermediate shallow flux decay (a sub(2)) likely caused by the continuous energy injection into the external shock. When this energy injection stops, a second break is then observed in the light curve (t sub(break,2))- This energy injection increases the energy of the afterglow shock by at least a factor of f 4 and augments the already severe requirements for the efficiency of the prompt gamma-ray emission.</abstract><cop>Chicago, IL</cop><pub>IOP Publishing</pub><doi>10.1086/500724</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2006-05, Vol.642 (1), p.389-400
issn 0004-637X
1538-4357
language eng
recordid cdi_proquest_miscellaneous_743552216
source IOP Publishing Free Content
subjects Astronomy
Earth, ocean, space
Exact sciences and technology
title Evidence for a Canonical Gamma-Ray Burst Afterglow Light Curve in the Swift XRT Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T04%3A48%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evidence%20for%20a%20Canonical%20Gamma-Ray%20Burst%20Afterglow%20Light%20Curve%20in%20the%20Swift%20XRT%20Data&rft.jtitle=The%20Astrophysical%20journal&rft.au=Nousek,%20J.%20A&rft.date=2006-05-01&rft.volume=642&rft.issue=1&rft.spage=389&rft.epage=400&rft.pages=389-400&rft.issn=0004-637X&rft.eissn=1538-4357&rft.coden=ASJOAB&rft_id=info:doi/10.1086/500724&rft_dat=%3Cproquest_O3W%3E19474819%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19474819&rft_id=info:pmid/&rfr_iscdi=true