Evaluating the Impact of the Number of Satellite Altimeters Used in an Assimilative Ocean Prediction System

The impact of the number of satellite altimeters providing sea surface height anomaly (SSHA) information for a data assimilation system is evaluated using two comparison frameworks and two statistical methodologies. The Naval Research Laboratory (NRL) Layered Ocean Model (NLOM) dynamically interpola...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of atmospheric and oceanic technology 2010-03, Vol.27 (3), p.528-546
Hauptverfasser: Helber, Robert W, Shriver, Jay F, Barron, Charlie N, Smedstad, Ole Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 546
container_issue 3
container_start_page 528
container_title Journal of atmospheric and oceanic technology
container_volume 27
creator Helber, Robert W
Shriver, Jay F
Barron, Charlie N
Smedstad, Ole Martin
description The impact of the number of satellite altimeters providing sea surface height anomaly (SSHA) information for a data assimilation system is evaluated using two comparison frameworks and two statistical methodologies. The Naval Research Laboratory (NRL) Layered Ocean Model (NLOM) dynamically interpolates satellite SSHA track data measured from space to produce high-resolution (eddy resolving) fields. The Modular Ocean Data Assimilation System (MODAS) uses the NLOM SSHA to produce synthetic three-dimensional fields of temperature and salinity over the global ocean. A series of case studies is defined where NLOM assimilates different combinations of data streams from zero to three altimeters. The resulting NLOM SSHA fields and the MODAS synthetic profiles are evaluated relative to independently observed ocean temperature and salinity profiles for the years 2001-03. The NLOM SSHA values are compared with the difference of the observed dynamic height from the climatological dynamic height. The synthetics are compared with observations using a measure of thermocline depth. Comparisons are done point for point and for 1 radius regions that are linearly fit over 2-month periods. To evaluate the impact of data outliers, statistical evaluations are done with traditional Gaussian statistics and also with robust nonparametric statistics. Significant error reduction is obtained, particularly in high SSHA variability regions, by including at least one altimeter. Given the limitation of these methods, the overall differences between one and three altimeters are significant only in bias. Data outliers increase Gaussian statistical error and error uncertainty compared to the same computations using nonparametric statistical methods.
doi_str_mv 10.1175/2009JTECHO683.1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743549054</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1642270228</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-532e2aa03dc662e7deb889863fbac1854c8eea61af743633ad098664b6bfba3</originalsourceid><addsrcrecordid>eNp90btP5DAQB2ALHRJ7QE1rUXA0gfEzSblaLS8hFmmhjhxnAoY89mwHif8e82igoLLG883I1o-QAwYnjOXqlAOUV3fLxcVKF-KEbZEZUxwykFz_ITPIRZmByvkO-RvCEwAwwfSMPC9fTDeZ6IYHGh-RXvYbYyMd24_qZupr9O_V2kTsOheRzrvoeozoA70P2FA3UDPQeQiud11a9IJ0ZTFd3XpsnI1uHOj6NUTs98h2a7qA-1_nLlmfLe8WF9n16vxyMb_OrAQVMyU4cmNANFZrjnmDdVGUhRZtbSwrlLQFotHMtLkUWgjTQOpqWes6CbFL_n1u3fjx_4QhVr0LNj3eDDhOoUpDSpagZJJHv0rOZFmUEhI8_hUyLTnPgfMi0cMf9Gmc_JC-W_GUkNR5qRI6_UTWjyF4bKuNd73xrxWD6j3M6luYFRNv0KCRzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>220046795</pqid></control><display><type>article</type><title>Evaluating the Impact of the Number of Satellite Altimeters Used in an Assimilative Ocean Prediction System</title><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Helber, Robert W ; Shriver, Jay F ; Barron, Charlie N ; Smedstad, Ole Martin</creator><creatorcontrib>Helber, Robert W ; Shriver, Jay F ; Barron, Charlie N ; Smedstad, Ole Martin</creatorcontrib><description>The impact of the number of satellite altimeters providing sea surface height anomaly (SSHA) information for a data assimilation system is evaluated using two comparison frameworks and two statistical methodologies. The Naval Research Laboratory (NRL) Layered Ocean Model (NLOM) dynamically interpolates satellite SSHA track data measured from space to produce high-resolution (eddy resolving) fields. The Modular Ocean Data Assimilation System (MODAS) uses the NLOM SSHA to produce synthetic three-dimensional fields of temperature and salinity over the global ocean. A series of case studies is defined where NLOM assimilates different combinations of data streams from zero to three altimeters. The resulting NLOM SSHA fields and the MODAS synthetic profiles are evaluated relative to independently observed ocean temperature and salinity profiles for the years 2001-03. The NLOM SSHA values are compared with the difference of the observed dynamic height from the climatological dynamic height. The synthetics are compared with observations using a measure of thermocline depth. Comparisons are done point for point and for 1 radius regions that are linearly fit over 2-month periods. To evaluate the impact of data outliers, statistical evaluations are done with traditional Gaussian statistics and also with robust nonparametric statistics. Significant error reduction is obtained, particularly in high SSHA variability regions, by including at least one altimeter. Given the limitation of these methods, the overall differences between one and three altimeters are significant only in bias. Data outliers increase Gaussian statistical error and error uncertainty compared to the same computations using nonparametric statistical methods.</description><identifier>ISSN: 0739-0572</identifier><identifier>EISSN: 1520-0426</identifier><identifier>DOI: 10.1175/2009JTECHO683.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Accuracy ; Altimeters ; Data assimilation ; Data collection ; Dynamical systems ; Dynamics ; Estimates ; Fishing industry ; Marine ; Mathematical models ; Meteorology ; Ocean temperature ; Oceans ; Salinity ; Satellites ; Standard deviation ; Statistical methods ; Thermocline ; Validation studies</subject><ispartof>Journal of atmospheric and oceanic technology, 2010-03, Vol.27 (3), p.528-546</ispartof><rights>Copyright American Meteorological Society Mar 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-532e2aa03dc662e7deb889863fbac1854c8eea61af743633ad098664b6bfba3</citedby><cites>FETCH-LOGICAL-c405t-532e2aa03dc662e7deb889863fbac1854c8eea61af743633ad098664b6bfba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3681,27924,27925</link.rule.ids></links><search><creatorcontrib>Helber, Robert W</creatorcontrib><creatorcontrib>Shriver, Jay F</creatorcontrib><creatorcontrib>Barron, Charlie N</creatorcontrib><creatorcontrib>Smedstad, Ole Martin</creatorcontrib><title>Evaluating the Impact of the Number of Satellite Altimeters Used in an Assimilative Ocean Prediction System</title><title>Journal of atmospheric and oceanic technology</title><description>The impact of the number of satellite altimeters providing sea surface height anomaly (SSHA) information for a data assimilation system is evaluated using two comparison frameworks and two statistical methodologies. The Naval Research Laboratory (NRL) Layered Ocean Model (NLOM) dynamically interpolates satellite SSHA track data measured from space to produce high-resolution (eddy resolving) fields. The Modular Ocean Data Assimilation System (MODAS) uses the NLOM SSHA to produce synthetic three-dimensional fields of temperature and salinity over the global ocean. A series of case studies is defined where NLOM assimilates different combinations of data streams from zero to three altimeters. The resulting NLOM SSHA fields and the MODAS synthetic profiles are evaluated relative to independently observed ocean temperature and salinity profiles for the years 2001-03. The NLOM SSHA values are compared with the difference of the observed dynamic height from the climatological dynamic height. The synthetics are compared with observations using a measure of thermocline depth. Comparisons are done point for point and for 1 radius regions that are linearly fit over 2-month periods. To evaluate the impact of data outliers, statistical evaluations are done with traditional Gaussian statistics and also with robust nonparametric statistics. Significant error reduction is obtained, particularly in high SSHA variability regions, by including at least one altimeter. Given the limitation of these methods, the overall differences between one and three altimeters are significant only in bias. Data outliers increase Gaussian statistical error and error uncertainty compared to the same computations using nonparametric statistical methods.</description><subject>Accuracy</subject><subject>Altimeters</subject><subject>Data assimilation</subject><subject>Data collection</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Estimates</subject><subject>Fishing industry</subject><subject>Marine</subject><subject>Mathematical models</subject><subject>Meteorology</subject><subject>Ocean temperature</subject><subject>Oceans</subject><subject>Salinity</subject><subject>Satellites</subject><subject>Standard deviation</subject><subject>Statistical methods</subject><subject>Thermocline</subject><subject>Validation studies</subject><issn>0739-0572</issn><issn>1520-0426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp90btP5DAQB2ALHRJ7QE1rUXA0gfEzSblaLS8hFmmhjhxnAoY89mwHif8e82igoLLG883I1o-QAwYnjOXqlAOUV3fLxcVKF-KEbZEZUxwykFz_ITPIRZmByvkO-RvCEwAwwfSMPC9fTDeZ6IYHGh-RXvYbYyMd24_qZupr9O_V2kTsOheRzrvoeozoA70P2FA3UDPQeQiud11a9IJ0ZTFd3XpsnI1uHOj6NUTs98h2a7qA-1_nLlmfLe8WF9n16vxyMb_OrAQVMyU4cmNANFZrjnmDdVGUhRZtbSwrlLQFotHMtLkUWgjTQOpqWes6CbFL_n1u3fjx_4QhVr0LNj3eDDhOoUpDSpagZJJHv0rOZFmUEhI8_hUyLTnPgfMi0cMf9Gmc_JC-W_GUkNR5qRI6_UTWjyF4bKuNd73xrxWD6j3M6luYFRNv0KCRzA</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Helber, Robert W</creator><creator>Shriver, Jay F</creator><creator>Barron, Charlie N</creator><creator>Smedstad, Ole Martin</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20100301</creationdate><title>Evaluating the Impact of the Number of Satellite Altimeters Used in an Assimilative Ocean Prediction System</title><author>Helber, Robert W ; Shriver, Jay F ; Barron, Charlie N ; Smedstad, Ole Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-532e2aa03dc662e7deb889863fbac1854c8eea61af743633ad098664b6bfba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Accuracy</topic><topic>Altimeters</topic><topic>Data assimilation</topic><topic>Data collection</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Estimates</topic><topic>Fishing industry</topic><topic>Marine</topic><topic>Mathematical models</topic><topic>Meteorology</topic><topic>Ocean temperature</topic><topic>Oceans</topic><topic>Salinity</topic><topic>Satellites</topic><topic>Standard deviation</topic><topic>Statistical methods</topic><topic>Thermocline</topic><topic>Validation studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Helber, Robert W</creatorcontrib><creatorcontrib>Shriver, Jay F</creatorcontrib><creatorcontrib>Barron, Charlie N</creatorcontrib><creatorcontrib>Smedstad, Ole Martin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of atmospheric and oceanic technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Helber, Robert W</au><au>Shriver, Jay F</au><au>Barron, Charlie N</au><au>Smedstad, Ole Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating the Impact of the Number of Satellite Altimeters Used in an Assimilative Ocean Prediction System</atitle><jtitle>Journal of atmospheric and oceanic technology</jtitle><date>2010-03-01</date><risdate>2010</risdate><volume>27</volume><issue>3</issue><spage>528</spage><epage>546</epage><pages>528-546</pages><issn>0739-0572</issn><eissn>1520-0426</eissn><abstract>The impact of the number of satellite altimeters providing sea surface height anomaly (SSHA) information for a data assimilation system is evaluated using two comparison frameworks and two statistical methodologies. The Naval Research Laboratory (NRL) Layered Ocean Model (NLOM) dynamically interpolates satellite SSHA track data measured from space to produce high-resolution (eddy resolving) fields. The Modular Ocean Data Assimilation System (MODAS) uses the NLOM SSHA to produce synthetic three-dimensional fields of temperature and salinity over the global ocean. A series of case studies is defined where NLOM assimilates different combinations of data streams from zero to three altimeters. The resulting NLOM SSHA fields and the MODAS synthetic profiles are evaluated relative to independently observed ocean temperature and salinity profiles for the years 2001-03. The NLOM SSHA values are compared with the difference of the observed dynamic height from the climatological dynamic height. The synthetics are compared with observations using a measure of thermocline depth. Comparisons are done point for point and for 1 radius regions that are linearly fit over 2-month periods. To evaluate the impact of data outliers, statistical evaluations are done with traditional Gaussian statistics and also with robust nonparametric statistics. Significant error reduction is obtained, particularly in high SSHA variability regions, by including at least one altimeter. Given the limitation of these methods, the overall differences between one and three altimeters are significant only in bias. Data outliers increase Gaussian statistical error and error uncertainty compared to the same computations using nonparametric statistical methods.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/2009JTECHO683.1</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0739-0572
ispartof Journal of atmospheric and oceanic technology, 2010-03, Vol.27 (3), p.528-546
issn 0739-0572
1520-0426
language eng
recordid cdi_proquest_miscellaneous_743549054
source American Meteorological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Accuracy
Altimeters
Data assimilation
Data collection
Dynamical systems
Dynamics
Estimates
Fishing industry
Marine
Mathematical models
Meteorology
Ocean temperature
Oceans
Salinity
Satellites
Standard deviation
Statistical methods
Thermocline
Validation studies
title Evaluating the Impact of the Number of Satellite Altimeters Used in an Assimilative Ocean Prediction System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A54%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20the%20Impact%20of%20the%20Number%20of%20Satellite%20Altimeters%20Used%20in%20an%20Assimilative%20Ocean%20Prediction%20System&rft.jtitle=Journal%20of%20atmospheric%20and%20oceanic%20technology&rft.au=Helber,%20Robert%20W&rft.date=2010-03-01&rft.volume=27&rft.issue=3&rft.spage=528&rft.epage=546&rft.pages=528-546&rft.issn=0739-0572&rft.eissn=1520-0426&rft_id=info:doi/10.1175/2009JTECHO683.1&rft_dat=%3Cproquest_cross%3E1642270228%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=220046795&rft_id=info:pmid/&rfr_iscdi=true