Evidence from massive siderite beds for a CO2-rich atmosphere before ~ 1.8 billion years ago
It is generally thought that, in order to compensate for lower solar flux and maintain liquid oceans on the early Earth, methane must have been an important greenhouse gas before ∼2.2 billion years (Gyr) ago 1 , 2 , 3 , 4 , 5 . This is based upon a simple thermodynamic calculation that relates the a...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2004-05, Vol.429 (6990), p.395-399 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 399 |
---|---|
container_issue | 6990 |
container_start_page | 395 |
container_title | Nature (London) |
container_volume | 429 |
creator | Ohmoto, Hiroshi Watanabe, Yumiko Kumazawa, Kazumasa |
description | It is generally thought that, in order to compensate for lower solar flux and maintain liquid oceans on the early Earth, methane must have been an important greenhouse gas before ∼2.2 billion years (Gyr) ago
1
,
2
,
3
,
4
,
5
. This is based upon a simple thermodynamic calculation that relates the absence of siderite (FeCO
3
) in some pre-2.2-Gyr palaeosols to atmospheric CO
2
concentrations that would have been too low to have provided the necessary greenhouse effect
1
. Using multi-dimensional thermodynamic analyses and geological evidence, we show here that the absence of siderite in palaeosols does not constrain atmospheric CO
2
concentrations. Siderite is absent in many palaeosols (both pre- and post-2.2-Gyr in age) because the O
2
concentrations and pH conditions in well-aerated soils have favoured the formation of ferric (Fe
3+
)-rich minerals, such as goethite, rather than siderite. Siderite, however, has formed throughout geological history in subsurface environments, such as euxinic seas, where anaerobic organisms created H
2
-rich conditions. The abundance of large, massive siderite-rich beds in pre-1.8-Gyr sedimentary sequences and their carbon isotope ratios indicate that the atmospheric CO
2
concentration was more than 100 times greater than today, causing the rain and ocean waters to be more acidic than today. We therefore conclude that CO
2
alone (without a significant contribution from methane) could have provided the necessary greenhouse effect to maintain liquid oceans on the early Earth. |
doi_str_mv | 10.1038/nature02573 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_743546921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A186370893</galeid><sourcerecordid>A186370893</sourcerecordid><originalsourceid>FETCH-LOGICAL-c562t-4cd5d07f8f32a2116cb615c4863a0f3bceb1d2f243fdde2e21ac7e427419da6a3</originalsourceid><addsrcrecordid>eNp90t1rFDEQAPBFFDyrT_4DQdAidc987cc9Hke1hWJBK74IYTY72absJtdkt9gX_3ZzXOF6ckoeAjO_GZhhsuw1o3NGRf3RwTgFpLyoxJNsxmRV5rKsq6fZjFJe57QW5fPsRYw3lNKCVXKW_Ty9sy06jcQEP5ABYrR3SGIKBjsiabCNxPhAgKwueR6sviYwDj6urzFs0imH5Ddh85o0tu-td-QeIUQCnX-ZPTPQR3z18B9l3z-dXq3O8ovLz-er5UWui5KPudRt0dLK1EZw4IyVuilZoWVdCqBGNBob1nLDpTBtixw5A12h5JVkixZKEEfZ8bbvOvjbCeOoBhs19j049FNUlRSFLBecJfnuv5IzySSnG_jmL3jjp-DSFIpTWQhalxuUb1EHPSrrjB8D6A4dBui9Q2NTeMnSHBWtF2LXdM_rtb1Vj9H8AEqvxcHqg13f7xUkM-KvsYMpRnX-7eu-Pfm3XV79WH05qHXwMQY0ah3sAOFeMao2B6ceHVzSbx9WBlFDbwI4beOupKgl4wVN7sPWxZRyHYbdag-1_QOOt-Bu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204530861</pqid></control><display><type>article</type><title>Evidence from massive siderite beds for a CO2-rich atmosphere before ~ 1.8 billion years ago</title><source>Springer Nature - Complete Springer Journals</source><source>Nature</source><creator>Ohmoto, Hiroshi ; Watanabe, Yumiko ; Kumazawa, Kazumasa</creator><creatorcontrib>Ohmoto, Hiroshi ; Watanabe, Yumiko ; Kumazawa, Kazumasa</creatorcontrib><description>It is generally thought that, in order to compensate for lower solar flux and maintain liquid oceans on the early Earth, methane must have been an important greenhouse gas before ∼2.2 billion years (Gyr) ago
1
,
2
,
3
,
4
,
5
. This is based upon a simple thermodynamic calculation that relates the absence of siderite (FeCO
3
) in some pre-2.2-Gyr palaeosols to atmospheric CO
2
concentrations that would have been too low to have provided the necessary greenhouse effect
1
. Using multi-dimensional thermodynamic analyses and geological evidence, we show here that the absence of siderite in palaeosols does not constrain atmospheric CO
2
concentrations. Siderite is absent in many palaeosols (both pre- and post-2.2-Gyr in age) because the O
2
concentrations and pH conditions in well-aerated soils have favoured the formation of ferric (Fe
3+
)-rich minerals, such as goethite, rather than siderite. Siderite, however, has formed throughout geological history in subsurface environments, such as euxinic seas, where anaerobic organisms created H
2
-rich conditions. The abundance of large, massive siderite-rich beds in pre-1.8-Gyr sedimentary sequences and their carbon isotope ratios indicate that the atmospheric CO
2
concentration was more than 100 times greater than today, causing the rain and ocean waters to be more acidic than today. We therefore conclude that CO
2
alone (without a significant contribution from methane) could have provided the necessary greenhouse effect to maintain liquid oceans on the early Earth.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature02573</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Atmosphere ; Carbon dioxide ; Carbon isotopes ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Geological history ; Geology ; Greenhouse effect ; Greenhouse gases ; Humanities and Social Sciences ; letter ; Methane ; multidisciplinary ; Oceans ; Science ; Science (multidisciplinary) ; Soil aeration ; Stratigraphy ; Thermodynamics</subject><ispartof>Nature (London), 2004-05, Vol.429 (6990), p.395-399</ispartof><rights>Macmillan Magazines Ltd. 2004</rights><rights>2004 INIST-CNRS</rights><rights>COPYRIGHT 2004 Nature Publishing Group</rights><rights>Copyright Macmillan Journals Ltd. May 27, 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c562t-4cd5d07f8f32a2116cb615c4863a0f3bceb1d2f243fdde2e21ac7e427419da6a3</citedby><cites>FETCH-LOGICAL-c562t-4cd5d07f8f32a2116cb615c4863a0f3bceb1d2f243fdde2e21ac7e427419da6a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature02573$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature02573$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15841250$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ohmoto, Hiroshi</creatorcontrib><creatorcontrib>Watanabe, Yumiko</creatorcontrib><creatorcontrib>Kumazawa, Kazumasa</creatorcontrib><title>Evidence from massive siderite beds for a CO2-rich atmosphere before ~ 1.8 billion years ago</title><title>Nature (London)</title><addtitle>Nature</addtitle><description>It is generally thought that, in order to compensate for lower solar flux and maintain liquid oceans on the early Earth, methane must have been an important greenhouse gas before ∼2.2 billion years (Gyr) ago
1
,
2
,
3
,
4
,
5
. This is based upon a simple thermodynamic calculation that relates the absence of siderite (FeCO
3
) in some pre-2.2-Gyr palaeosols to atmospheric CO
2
concentrations that would have been too low to have provided the necessary greenhouse effect
1
. Using multi-dimensional thermodynamic analyses and geological evidence, we show here that the absence of siderite in palaeosols does not constrain atmospheric CO
2
concentrations. Siderite is absent in many palaeosols (both pre- and post-2.2-Gyr in age) because the O
2
concentrations and pH conditions in well-aerated soils have favoured the formation of ferric (Fe
3+
)-rich minerals, such as goethite, rather than siderite. Siderite, however, has formed throughout geological history in subsurface environments, such as euxinic seas, where anaerobic organisms created H
2
-rich conditions. The abundance of large, massive siderite-rich beds in pre-1.8-Gyr sedimentary sequences and their carbon isotope ratios indicate that the atmospheric CO
2
concentration was more than 100 times greater than today, causing the rain and ocean waters to be more acidic than today. We therefore conclude that CO
2
alone (without a significant contribution from methane) could have provided the necessary greenhouse effect to maintain liquid oceans on the early Earth.</description><subject>Atmosphere</subject><subject>Carbon dioxide</subject><subject>Carbon isotopes</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Geological history</subject><subject>Geology</subject><subject>Greenhouse effect</subject><subject>Greenhouse gases</subject><subject>Humanities and Social Sciences</subject><subject>letter</subject><subject>Methane</subject><subject>multidisciplinary</subject><subject>Oceans</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Soil aeration</subject><subject>Stratigraphy</subject><subject>Thermodynamics</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp90t1rFDEQAPBFFDyrT_4DQdAidc987cc9Hke1hWJBK74IYTY72absJtdkt9gX_3ZzXOF6ckoeAjO_GZhhsuw1o3NGRf3RwTgFpLyoxJNsxmRV5rKsq6fZjFJe57QW5fPsRYw3lNKCVXKW_Ty9sy06jcQEP5ABYrR3SGIKBjsiabCNxPhAgKwueR6sviYwDj6urzFs0imH5Ddh85o0tu-td-QeIUQCnX-ZPTPQR3z18B9l3z-dXq3O8ovLz-er5UWui5KPudRt0dLK1EZw4IyVuilZoWVdCqBGNBob1nLDpTBtixw5A12h5JVkixZKEEfZ8bbvOvjbCeOoBhs19j049FNUlRSFLBecJfnuv5IzySSnG_jmL3jjp-DSFIpTWQhalxuUb1EHPSrrjB8D6A4dBui9Q2NTeMnSHBWtF2LXdM_rtb1Vj9H8AEqvxcHqg13f7xUkM-KvsYMpRnX-7eu-Pfm3XV79WH05qHXwMQY0ah3sAOFeMao2B6ceHVzSbx9WBlFDbwI4beOupKgl4wVN7sPWxZRyHYbdag-1_QOOt-Bu</recordid><startdate>20040527</startdate><enddate>20040527</enddate><creator>Ohmoto, Hiroshi</creator><creator>Watanabe, Yumiko</creator><creator>Kumazawa, Kazumasa</creator><general>Nature Publishing Group UK</general><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7TV</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20040527</creationdate><title>Evidence from massive siderite beds for a CO2-rich atmosphere before ~ 1.8 billion years ago</title><author>Ohmoto, Hiroshi ; Watanabe, Yumiko ; Kumazawa, Kazumasa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c562t-4cd5d07f8f32a2116cb615c4863a0f3bceb1d2f243fdde2e21ac7e427419da6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Atmosphere</topic><topic>Carbon dioxide</topic><topic>Carbon isotopes</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Geological history</topic><topic>Geology</topic><topic>Greenhouse effect</topic><topic>Greenhouse gases</topic><topic>Humanities and Social Sciences</topic><topic>letter</topic><topic>Methane</topic><topic>multidisciplinary</topic><topic>Oceans</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Soil aeration</topic><topic>Stratigraphy</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ohmoto, Hiroshi</creatorcontrib><creatorcontrib>Watanabe, Yumiko</creatorcontrib><creatorcontrib>Kumazawa, Kazumasa</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ohmoto, Hiroshi</au><au>Watanabe, Yumiko</au><au>Kumazawa, Kazumasa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evidence from massive siderite beds for a CO2-rich atmosphere before ~ 1.8 billion years ago</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><date>2004-05-27</date><risdate>2004</risdate><volume>429</volume><issue>6990</issue><spage>395</spage><epage>399</epage><pages>395-399</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>It is generally thought that, in order to compensate for lower solar flux and maintain liquid oceans on the early Earth, methane must have been an important greenhouse gas before ∼2.2 billion years (Gyr) ago
1
,
2
,
3
,
4
,
5
. This is based upon a simple thermodynamic calculation that relates the absence of siderite (FeCO
3
) in some pre-2.2-Gyr palaeosols to atmospheric CO
2
concentrations that would have been too low to have provided the necessary greenhouse effect
1
. Using multi-dimensional thermodynamic analyses and geological evidence, we show here that the absence of siderite in palaeosols does not constrain atmospheric CO
2
concentrations. Siderite is absent in many palaeosols (both pre- and post-2.2-Gyr in age) because the O
2
concentrations and pH conditions in well-aerated soils have favoured the formation of ferric (Fe
3+
)-rich minerals, such as goethite, rather than siderite. Siderite, however, has formed throughout geological history in subsurface environments, such as euxinic seas, where anaerobic organisms created H
2
-rich conditions. The abundance of large, massive siderite-rich beds in pre-1.8-Gyr sedimentary sequences and their carbon isotope ratios indicate that the atmospheric CO
2
concentration was more than 100 times greater than today, causing the rain and ocean waters to be more acidic than today. We therefore conclude that CO
2
alone (without a significant contribution from methane) could have provided the necessary greenhouse effect to maintain liquid oceans on the early Earth.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nature02573</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2004-05, Vol.429 (6990), p.395-399 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_743546921 |
source | Springer Nature - Complete Springer Journals; Nature |
subjects | Atmosphere Carbon dioxide Carbon isotopes Earth sciences Earth, ocean, space Exact sciences and technology Geological history Geology Greenhouse effect Greenhouse gases Humanities and Social Sciences letter Methane multidisciplinary Oceans Science Science (multidisciplinary) Soil aeration Stratigraphy Thermodynamics |
title | Evidence from massive siderite beds for a CO2-rich atmosphere before ~ 1.8 billion years ago |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T21%3A22%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evidence%20from%20massive%20siderite%20beds%20for%20a%20CO2-rich%20atmosphere%20before%20~%201.8%20billion%20years%20ago&rft.jtitle=Nature%20(London)&rft.au=Ohmoto,%20Hiroshi&rft.date=2004-05-27&rft.volume=429&rft.issue=6990&rft.spage=395&rft.epage=399&rft.pages=395-399&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature02573&rft_dat=%3Cgale_proqu%3EA186370893%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204530861&rft_id=info:pmid/&rft_galeid=A186370893&rfr_iscdi=true |