Taylor–Couette flow with independently rotating end plates

Results are presented from a combined numerical and experimental study of steady bifurcation phenomena in a modified Taylor-Couette geometry where the end plates of the flow domain are allowed to rotate independently of the inner cylinder. The ends rotate synchronously and the ratio between the rate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical and computational fluid dynamics 2004-11, Vol.18 (2-4), p.129-136
Hauptverfasser: Abshagen, J, Cliffe, K A, Langenberg, J, Mullin, T, Pfister, G, Tavener, S J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 136
container_issue 2-4
container_start_page 129
container_title Theoretical and computational fluid dynamics
container_volume 18
creator Abshagen, J
Cliffe, K A
Langenberg, J
Mullin, T
Pfister, G
Tavener, S J
description Results are presented from a combined numerical and experimental study of steady bifurcation phenomena in a modified Taylor-Couette geometry where the end plates of the flow domain are allowed to rotate independently of the inner cylinder. The ends rotate synchronously and the ratio between the rate of rotation of the ends e and the inner cylinder i defines a control parameter :=e/i. Stationary ends favour inward motion along the end walls whereas rotating walls promote outward flow. We study the exchange between such states and focus on two-cell flows, which are found in the parameter range between =0 and =1 for =2. Hence is used as an unfolding parameter. A cusp bifurcation is uncovered as the organizing centre for the stability exchange between the two states. Symmetry breaking bifurcations, which lead to flows that break the mid-plane symmetry are also revealed. Overall, excellent agreement is found between numerical and experimental results. [PUBLICATION ABSTRACT]
doi_str_mv 10.1007/s00162-004-0135-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743544635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743544635</sourcerecordid><originalsourceid>FETCH-LOGICAL-c304t-6405dd4f252187ff9561fe39363285c303f82a1b17279bbe95758080f40fd0f3</originalsourceid><addsrcrecordid>eNpdkMFKAzEURYMoWKsf4G5w42r0JS_JzIAbKVaFgpvuQ9pJdEo6GZMMpTv_wT_0S0ypKzf3weXwuBxCrincUYDqPgJQyUoAXgJFUeIJmVCOrGRMwCmZQJNL3kh-Ti5i3AAACllPyMNS750PP1_fMz-alExhnd8Vuy59FF3fmsHk6JPbF8Ennbr-vchNMTidTLwkZ1a7aK7-7pQs50_L2Uu5eHt-nT0uyjUCT6XkINqWWyYYrStrGyGpNdigRFaLzKCtmaYrWrGqWa1MIypRQw2Wg23B4pTcHt8OwX-OJia17eLaOKd748eoKo6Cc4kikzf_yI0fQ5-3KcZYxWuKLEP0CK2DjzEYq4bQbXXYKwrqIFMdZaosUx1kKsRfqiZmiQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222748132</pqid></control><display><type>article</type><title>Taylor–Couette flow with independently rotating end plates</title><source>SpringerLink Journals - AutoHoldings</source><creator>Abshagen, J ; Cliffe, K A ; Langenberg, J ; Mullin, T ; Pfister, G ; Tavener, S J</creator><creatorcontrib>Abshagen, J ; Cliffe, K A ; Langenberg, J ; Mullin, T ; Pfister, G ; Tavener, S J</creatorcontrib><description>Results are presented from a combined numerical and experimental study of steady bifurcation phenomena in a modified Taylor-Couette geometry where the end plates of the flow domain are allowed to rotate independently of the inner cylinder. The ends rotate synchronously and the ratio between the rate of rotation of the ends e and the inner cylinder i defines a control parameter :=e/i. Stationary ends favour inward motion along the end walls whereas rotating walls promote outward flow. We study the exchange between such states and focus on two-cell flows, which are found in the parameter range between =0 and =1 for =2. Hence is used as an unfolding parameter. A cusp bifurcation is uncovered as the organizing centre for the stability exchange between the two states. Symmetry breaking bifurcations, which lead to flows that break the mid-plane symmetry are also revealed. Overall, excellent agreement is found between numerical and experimental results. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0935-4964</identifier><identifier>EISSN: 1432-2250</identifier><identifier>DOI: 10.1007/s00162-004-0135-3</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Experiments ; Flow velocity ; Fluid dynamics</subject><ispartof>Theoretical and computational fluid dynamics, 2004-11, Vol.18 (2-4), p.129-136</ispartof><rights>Copyright Springer-Verlag 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c304t-6405dd4f252187ff9561fe39363285c303f82a1b17279bbe95758080f40fd0f3</citedby><cites>FETCH-LOGICAL-c304t-6405dd4f252187ff9561fe39363285c303f82a1b17279bbe95758080f40fd0f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Abshagen, J</creatorcontrib><creatorcontrib>Cliffe, K A</creatorcontrib><creatorcontrib>Langenberg, J</creatorcontrib><creatorcontrib>Mullin, T</creatorcontrib><creatorcontrib>Pfister, G</creatorcontrib><creatorcontrib>Tavener, S J</creatorcontrib><title>Taylor–Couette flow with independently rotating end plates</title><title>Theoretical and computational fluid dynamics</title><description>Results are presented from a combined numerical and experimental study of steady bifurcation phenomena in a modified Taylor-Couette geometry where the end plates of the flow domain are allowed to rotate independently of the inner cylinder. The ends rotate synchronously and the ratio between the rate of rotation of the ends e and the inner cylinder i defines a control parameter :=e/i. Stationary ends favour inward motion along the end walls whereas rotating walls promote outward flow. We study the exchange between such states and focus on two-cell flows, which are found in the parameter range between =0 and =1 for =2. Hence is used as an unfolding parameter. A cusp bifurcation is uncovered as the organizing centre for the stability exchange between the two states. Symmetry breaking bifurcations, which lead to flows that break the mid-plane symmetry are also revealed. Overall, excellent agreement is found between numerical and experimental results. [PUBLICATION ABSTRACT]</description><subject>Experiments</subject><subject>Flow velocity</subject><subject>Fluid dynamics</subject><issn>0935-4964</issn><issn>1432-2250</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkMFKAzEURYMoWKsf4G5w42r0JS_JzIAbKVaFgpvuQ9pJdEo6GZMMpTv_wT_0S0ypKzf3weXwuBxCrincUYDqPgJQyUoAXgJFUeIJmVCOrGRMwCmZQJNL3kh-Ti5i3AAACllPyMNS750PP1_fMz-alExhnd8Vuy59FF3fmsHk6JPbF8Ennbr-vchNMTidTLwkZ1a7aK7-7pQs50_L2Uu5eHt-nT0uyjUCT6XkINqWWyYYrStrGyGpNdigRFaLzKCtmaYrWrGqWa1MIypRQw2Wg23B4pTcHt8OwX-OJia17eLaOKd748eoKo6Cc4kikzf_yI0fQ5-3KcZYxWuKLEP0CK2DjzEYq4bQbXXYKwrqIFMdZaosUx1kKsRfqiZmiQ</recordid><startdate>20041101</startdate><enddate>20041101</enddate><creator>Abshagen, J</creator><creator>Cliffe, K A</creator><creator>Langenberg, J</creator><creator>Mullin, T</creator><creator>Pfister, G</creator><creator>Tavener, S J</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>U9A</scope></search><sort><creationdate>20041101</creationdate><title>Taylor–Couette flow with independently rotating end plates</title><author>Abshagen, J ; Cliffe, K A ; Langenberg, J ; Mullin, T ; Pfister, G ; Tavener, S J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c304t-6405dd4f252187ff9561fe39363285c303f82a1b17279bbe95758080f40fd0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Experiments</topic><topic>Flow velocity</topic><topic>Fluid dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abshagen, J</creatorcontrib><creatorcontrib>Cliffe, K A</creatorcontrib><creatorcontrib>Langenberg, J</creatorcontrib><creatorcontrib>Mullin, T</creatorcontrib><creatorcontrib>Pfister, G</creatorcontrib><creatorcontrib>Tavener, S J</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Theoretical and computational fluid dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abshagen, J</au><au>Cliffe, K A</au><au>Langenberg, J</au><au>Mullin, T</au><au>Pfister, G</au><au>Tavener, S J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Taylor–Couette flow with independently rotating end plates</atitle><jtitle>Theoretical and computational fluid dynamics</jtitle><date>2004-11-01</date><risdate>2004</risdate><volume>18</volume><issue>2-4</issue><spage>129</spage><epage>136</epage><pages>129-136</pages><issn>0935-4964</issn><eissn>1432-2250</eissn><abstract>Results are presented from a combined numerical and experimental study of steady bifurcation phenomena in a modified Taylor-Couette geometry where the end plates of the flow domain are allowed to rotate independently of the inner cylinder. The ends rotate synchronously and the ratio between the rate of rotation of the ends e and the inner cylinder i defines a control parameter :=e/i. Stationary ends favour inward motion along the end walls whereas rotating walls promote outward flow. We study the exchange between such states and focus on two-cell flows, which are found in the parameter range between =0 and =1 for =2. Hence is used as an unfolding parameter. A cusp bifurcation is uncovered as the organizing centre for the stability exchange between the two states. Symmetry breaking bifurcations, which lead to flows that break the mid-plane symmetry are also revealed. Overall, excellent agreement is found between numerical and experimental results. [PUBLICATION ABSTRACT]</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s00162-004-0135-3</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0935-4964
ispartof Theoretical and computational fluid dynamics, 2004-11, Vol.18 (2-4), p.129-136
issn 0935-4964
1432-2250
language eng
recordid cdi_proquest_miscellaneous_743544635
source SpringerLink Journals - AutoHoldings
subjects Experiments
Flow velocity
Fluid dynamics
title Taylor–Couette flow with independently rotating end plates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A37%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Taylor%E2%80%93Couette%20flow%20with%20independently%20rotating%20end%20plates&rft.jtitle=Theoretical%20and%20computational%20fluid%20dynamics&rft.au=Abshagen,%20J&rft.date=2004-11-01&rft.volume=18&rft.issue=2-4&rft.spage=129&rft.epage=136&rft.pages=129-136&rft.issn=0935-4964&rft.eissn=1432-2250&rft_id=info:doi/10.1007/s00162-004-0135-3&rft_dat=%3Cproquest_cross%3E743544635%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222748132&rft_id=info:pmid/&rfr_iscdi=true