Toxicity of fluoroquinolone antibiotics to aquatic organisms

Toxicity tests were performed with seven fluoroquinolone antibiotics, ciprofloxacin, lomefloxacin, ofloxacin, levofloxacin, clinafloxacin, enrofloxacin, and flumequine, on five aquatic organisms. Overall toxicity values ranged from 7.9 to 23,000 μg/L. The cyanobacterium Microcystis aeruginosa was th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental toxicology and chemistry 2005-02, Vol.24 (2), p.423-430
Hauptverfasser: Robinson, April A., Belden, Jason B., Lydy, Michael J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Toxicity tests were performed with seven fluoroquinolone antibiotics, ciprofloxacin, lomefloxacin, ofloxacin, levofloxacin, clinafloxacin, enrofloxacin, and flumequine, on five aquatic organisms. Overall toxicity values ranged from 7.9 to 23,000 μg/L. The cyanobacterium Microcystis aeruginosa was the most sensitive organism (5‐d growth and reproduction, effective concentrations [EC50s] ranging from 7.9 to 1,960 μg/L and a median of 49 μg/L), followed by duckweed (Lemna minor, 7‐d reproduction, EC50 values ranged from 53 to 2,470 μg/L with a median of 106 μg/L) and the green alga Pseudokirchneriella subcapitata (3‐d growth and reproduction, EC50 values ranged from 1,100 to 22,700 μg/L with a median 7,400 μg/L). Results from tests with the crustacean Daphnia magna (48‐h survival) and fathead minnow (Pimephales promelas, 7‐d early life stage survival and growth) showed limited toxicity with no‐observed‐effect concentrations at or near 10 mg/L. Fish dry weights obtained in the ciprofloxacin, levofloxacin, and ofloxacin treatments (10 mg/L) were significantly higher than in control fish. The hazard of adverse effects occurring to the tested organisms in the environment was quantified by using hazard quotients. An estimated environmental concentration of 1 μg/L was chosen based on measured environmental concentrations previously reported in surface water; at this level, only M. aeruginosa may be at risk in surface water. However, the selective toxicity of these compounds may have implications for aquatic community structure.
ISSN:0730-7268
1552-8618
DOI:10.1897/04-210R.1