Textural Development of AA 5754 Sheet Deformed under In-Plane Biaxial Tension
Crystallographic texture evolution was quantified as a function of biaxial strain level and strain path for AA5754-O sheet metal in an effort to provide a physical description of grain rotation resulting from in-plane stretching. Samples were incrementally deformed to near-failure in three strain st...
Gespeichert in:
Veröffentlicht in: | Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2008-09, Vol.39 (9), p.2246-2258 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2258 |
---|---|
container_issue | 9 |
container_start_page | 2246 |
container_title | Metallurgical and materials transactions. A, Physical metallurgy and materials science |
container_volume | 39 |
creator | Banovic, S.W. Iadicola, M.A. Foecke, T. |
description | Crystallographic texture evolution was quantified as a function of biaxial strain level and strain path for AA5754-O sheet metal in an effort to provide a physical description of grain rotation resulting from in-plane stretching. Samples were incrementally deformed to near-failure in three strain states (equibiaxial, plane strain, and uniaxial modes) with the rolling direction (RD) and transverse direction (TD) of the sheet parallel to the major stress axis for the latter two cases. The macrotextures were measured using X-ray diffraction techniques. Results showed that for a given strain path similar deformation textures developed in the two material sets (RD- and TD-oriented samples), though the evolution of the deformed texture was not homogeneous over the entire strain range. These variations in orientation intensities were related to the feeder components found in the initial texture and the availability of these components to rotate toward the more stable orientations under the particular mode of deformation. The nonuniform texture development of the sheet along different directions appears to contribute to the anisotropic mechanical response of the sheet during stretching as measured in the evolving multiaxial flow surfaces. |
doi_str_mv | 10.1007/s11661-008-9547-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743542395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>34071301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-cac70164e44918514e394d17069633fd7a482a8ece645b3f18dc82936bf9ba483</originalsourceid><addsrcrecordid>eNp9kd1rFDEUxQep4Lb6B_g2FGyfUu-dfD-urf2AioLrc8hm7uiU2cyazMj635tlSwWhPiVwfudwLqeq3iJcIIB-nxGVQgZgmJVCM_uiWqAUnKEVcFT-oDmTquGvquOcHwAALVeL6tOKdtOc_FBf0S8axu2G4lSPXb1c1lJLUX_9QTQVsRvThtp6ji2l-i6yL4OPVH_o_a4v5hXF3I_xdfWy80OmN4_vSfXt-uPq8pbdf765u1zesyDATCz4oAGVICEsGomCuBUtalBWcd612gvTeEOBlJBr3qFpg2lK33Vn10XjJ9X5IXebxp8z5clt-hxo2Hca5-y04FI03MpCnv2X5AI0csACnv4DPoxziuUK1yDXCNLsITxAIY05J-rcNvUbn347BLffwR12cGUHt9_B2eJ59xjsc_BDl3wMfX4yNiCVkVYXrjlwuUjxO6W_BZ4P_wOAFZQ6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213710581</pqid></control><display><type>article</type><title>Textural Development of AA 5754 Sheet Deformed under In-Plane Biaxial Tension</title><source>SpringerNature Journals</source><creator>Banovic, S.W. ; Iadicola, M.A. ; Foecke, T.</creator><creatorcontrib>Banovic, S.W. ; Iadicola, M.A. ; Foecke, T.</creatorcontrib><description>Crystallographic texture evolution was quantified as a function of biaxial strain level and strain path for AA5754-O sheet metal in an effort to provide a physical description of grain rotation resulting from in-plane stretching. Samples were incrementally deformed to near-failure in three strain states (equibiaxial, plane strain, and uniaxial modes) with the rolling direction (RD) and transverse direction (TD) of the sheet parallel to the major stress axis for the latter two cases. The macrotextures were measured using X-ray diffraction techniques. Results showed that for a given strain path similar deformation textures developed in the two material sets (RD- and TD-oriented samples), though the evolution of the deformed texture was not homogeneous over the entire strain range. These variations in orientation intensities were related to the feeder components found in the initial texture and the availability of these components to rotate toward the more stable orientations under the particular mode of deformation. The nonuniform texture development of the sheet along different directions appears to contribute to the anisotropic mechanical response of the sheet during stretching as measured in the evolving multiaxial flow surfaces.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-008-9547-9</identifier><identifier>CODEN: MMTAEB</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Aluminum alloys ; Applied sciences ; Changes ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Deformation ; Exact sciences and technology ; Materials Science ; Mechanical properties ; Metallic Materials ; Metallurgy ; Metals. Metallurgy ; Nanotechnology ; Structural Materials ; Surfaces and Interfaces ; Tension tests ; Thin Films</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2008-09, Vol.39 (9), p.2246-2258</ispartof><rights>The Minerals, Metals & Materials Society and ASM International 2008</rights><rights>2009 INIST-CNRS</rights><rights>Copyright Minerals, Metals & Materials Society Sep 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-cac70164e44918514e394d17069633fd7a482a8ece645b3f18dc82936bf9ba483</citedby><cites>FETCH-LOGICAL-c408t-cac70164e44918514e394d17069633fd7a482a8ece645b3f18dc82936bf9ba483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11661-008-9547-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11661-008-9547-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20568597$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Banovic, S.W.</creatorcontrib><creatorcontrib>Iadicola, M.A.</creatorcontrib><creatorcontrib>Foecke, T.</creatorcontrib><title>Textural Development of AA 5754 Sheet Deformed under In-Plane Biaxial Tension</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>Crystallographic texture evolution was quantified as a function of biaxial strain level and strain path for AA5754-O sheet metal in an effort to provide a physical description of grain rotation resulting from in-plane stretching. Samples were incrementally deformed to near-failure in three strain states (equibiaxial, plane strain, and uniaxial modes) with the rolling direction (RD) and transverse direction (TD) of the sheet parallel to the major stress axis for the latter two cases. The macrotextures were measured using X-ray diffraction techniques. Results showed that for a given strain path similar deformation textures developed in the two material sets (RD- and TD-oriented samples), though the evolution of the deformed texture was not homogeneous over the entire strain range. These variations in orientation intensities were related to the feeder components found in the initial texture and the availability of these components to rotate toward the more stable orientations under the particular mode of deformation. The nonuniform texture development of the sheet along different directions appears to contribute to the anisotropic mechanical response of the sheet during stretching as measured in the evolving multiaxial flow surfaces.</description><subject>Aluminum alloys</subject><subject>Applied sciences</subject><subject>Changes</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Deformation</subject><subject>Exact sciences and technology</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Metallic Materials</subject><subject>Metallurgy</subject><subject>Metals. Metallurgy</subject><subject>Nanotechnology</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Tension tests</subject><subject>Thin Films</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kd1rFDEUxQep4Lb6B_g2FGyfUu-dfD-urf2AioLrc8hm7uiU2cyazMj635tlSwWhPiVwfudwLqeq3iJcIIB-nxGVQgZgmJVCM_uiWqAUnKEVcFT-oDmTquGvquOcHwAALVeL6tOKdtOc_FBf0S8axu2G4lSPXb1c1lJLUX_9QTQVsRvThtp6ji2l-i6yL4OPVH_o_a4v5hXF3I_xdfWy80OmN4_vSfXt-uPq8pbdf765u1zesyDATCz4oAGVICEsGomCuBUtalBWcd612gvTeEOBlJBr3qFpg2lK33Vn10XjJ9X5IXebxp8z5clt-hxo2Hca5-y04FI03MpCnv2X5AI0csACnv4DPoxziuUK1yDXCNLsITxAIY05J-rcNvUbn347BLffwR12cGUHt9_B2eJ59xjsc_BDl3wMfX4yNiCVkVYXrjlwuUjxO6W_BZ4P_wOAFZQ6</recordid><startdate>20080901</startdate><enddate>20080901</enddate><creator>Banovic, S.W.</creator><creator>Iadicola, M.A.</creator><creator>Foecke, T.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20080901</creationdate><title>Textural Development of AA 5754 Sheet Deformed under In-Plane Biaxial Tension</title><author>Banovic, S.W. ; Iadicola, M.A. ; Foecke, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-cac70164e44918514e394d17069633fd7a482a8ece645b3f18dc82936bf9ba483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Aluminum alloys</topic><topic>Applied sciences</topic><topic>Changes</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Deformation</topic><topic>Exact sciences and technology</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Metallic Materials</topic><topic>Metallurgy</topic><topic>Metals. Metallurgy</topic><topic>Nanotechnology</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Tension tests</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Banovic, S.W.</creatorcontrib><creatorcontrib>Iadicola, M.A.</creatorcontrib><creatorcontrib>Foecke, T.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banovic, S.W.</au><au>Iadicola, M.A.</au><au>Foecke, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Textural Development of AA 5754 Sheet Deformed under In-Plane Biaxial Tension</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2008-09-01</date><risdate>2008</risdate><volume>39</volume><issue>9</issue><spage>2246</spage><epage>2258</epage><pages>2246-2258</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><coden>MMTAEB</coden><abstract>Crystallographic texture evolution was quantified as a function of biaxial strain level and strain path for AA5754-O sheet metal in an effort to provide a physical description of grain rotation resulting from in-plane stretching. Samples were incrementally deformed to near-failure in three strain states (equibiaxial, plane strain, and uniaxial modes) with the rolling direction (RD) and transverse direction (TD) of the sheet parallel to the major stress axis for the latter two cases. The macrotextures were measured using X-ray diffraction techniques. Results showed that for a given strain path similar deformation textures developed in the two material sets (RD- and TD-oriented samples), though the evolution of the deformed texture was not homogeneous over the entire strain range. These variations in orientation intensities were related to the feeder components found in the initial texture and the availability of these components to rotate toward the more stable orientations under the particular mode of deformation. The nonuniform texture development of the sheet along different directions appears to contribute to the anisotropic mechanical response of the sheet during stretching as measured in the evolving multiaxial flow surfaces.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11661-008-9547-9</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-5623 |
ispartof | Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2008-09, Vol.39 (9), p.2246-2258 |
issn | 1073-5623 1543-1940 |
language | eng |
recordid | cdi_proquest_miscellaneous_743542395 |
source | SpringerNature Journals |
subjects | Aluminum alloys Applied sciences Changes Characterization and Evaluation of Materials Chemistry and Materials Science Deformation Exact sciences and technology Materials Science Mechanical properties Metallic Materials Metallurgy Metals. Metallurgy Nanotechnology Structural Materials Surfaces and Interfaces Tension tests Thin Films |
title | Textural Development of AA 5754 Sheet Deformed under In-Plane Biaxial Tension |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A18%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Textural%20Development%20of%20AA%205754%20Sheet%20Deformed%20under%20In-Plane%20Biaxial%20Tension&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Banovic,%20S.W.&rft.date=2008-09-01&rft.volume=39&rft.issue=9&rft.spage=2246&rft.epage=2258&rft.pages=2246-2258&rft.issn=1073-5623&rft.eissn=1543-1940&rft.coden=MMTAEB&rft_id=info:doi/10.1007/s11661-008-9547-9&rft_dat=%3Cproquest_cross%3E34071301%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213710581&rft_id=info:pmid/&rfr_iscdi=true |