Training Artificial Neural Networks Using Taguchi Methods
This paper shows how the process optimization methods known as Taguchi methods may be applied to the training of Artificial Neural Networks. A comparison is made between the efficiency of training using Taguchi methods and the efficiency of conventional training methods; attention is drawn to the ad...
Gespeichert in:
Veröffentlicht in: | The Artificial intelligence review 1999-06, Vol.13 (3), p.177-184 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 184 |
---|---|
container_issue | 3 |
container_start_page | 177 |
container_title | The Artificial intelligence review |
container_volume | 13 |
creator | Macleod, Chris Geva Dror Maxwell, Grant |
description | This paper shows how the process optimization methods known as Taguchi methods may be applied to the training of Artificial Neural Networks. A comparison is made between the efficiency of training using Taguchi methods and the efficiency of conventional training methods; attention is drawn to the advantages of Taguchi methods. Further, it is shown that Taguchi methods offer potential benefits in evaluating network behaviour such as the ability to examine interaction of weights and neurons within a network. |
doi_str_mv | 10.1023/A:1006534203575 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_743535076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>57500005</sourcerecordid><originalsourceid>FETCH-LOGICAL-p243t-535a8c9fab0a22bec2d94a2910abc9a8961273b8ccc2d8e6734a6f856a7009053</originalsourceid><addsrcrecordid>eNp9kD1PwzAYhC0EEqEws0YMMAVef9tsUcWXVGBp5-qN67QuISlxIv4-LjAxMN1wj-50R8g5hWsKjN-UtxRASS4YcKnlAcmo1LzQQrFDkgFTtmCG0WNyEuMWACQTPCN23mNoQ7vOy34IdXABm_zFj_23DJ9d_xbzRdwDc1yPbhPyZz9sulU8JUc1NtGf_eqELO7v5tPHYvb68DQtZ8UuFQyF5BKNszVWgIxV3rGVFcgsBaycRWMVZZpXxrnkGK80F6hqIxVqAAuST8jVT-6u7z5GH4fle4jONw22vhvjUgueOkCrRF7-S6ZXYD88gRd_wG039m1asaRWWyMFN_wL06xiyg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>197985438</pqid></control><display><type>article</type><title>Training Artificial Neural Networks Using Taguchi Methods</title><source>SpringerLink Journals - AutoHoldings</source><creator>Macleod, Chris ; Geva Dror ; Maxwell, Grant</creator><creatorcontrib>Macleod, Chris ; Geva Dror ; Maxwell, Grant</creatorcontrib><description>This paper shows how the process optimization methods known as Taguchi methods may be applied to the training of Artificial Neural Networks. A comparison is made between the efficiency of training using Taguchi methods and the efficiency of conventional training methods; attention is drawn to the advantages of Taguchi methods. Further, it is shown that Taguchi methods offer potential benefits in evaluating network behaviour such as the ability to examine interaction of weights and neurons within a network.</description><identifier>ISSN: 0269-2821</identifier><identifier>EISSN: 1573-7462</identifier><identifier>DOI: 10.1023/A:1006534203575</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Artificial intelligence ; Cement ; Experiments ; Neural networks ; Neurons ; Optimization techniques ; Taguchi methods ; Training</subject><ispartof>The Artificial intelligence review, 1999-06, Vol.13 (3), p.177-184</ispartof><rights>Kluwer Academic Publishers 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Macleod, Chris</creatorcontrib><creatorcontrib>Geva Dror</creatorcontrib><creatorcontrib>Maxwell, Grant</creatorcontrib><title>Training Artificial Neural Networks Using Taguchi Methods</title><title>The Artificial intelligence review</title><description>This paper shows how the process optimization methods known as Taguchi methods may be applied to the training of Artificial Neural Networks. A comparison is made between the efficiency of training using Taguchi methods and the efficiency of conventional training methods; attention is drawn to the advantages of Taguchi methods. Further, it is shown that Taguchi methods offer potential benefits in evaluating network behaviour such as the ability to examine interaction of weights and neurons within a network.</description><subject>Artificial intelligence</subject><subject>Cement</subject><subject>Experiments</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Optimization techniques</subject><subject>Taguchi methods</subject><subject>Training</subject><issn>0269-2821</issn><issn>1573-7462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kD1PwzAYhC0EEqEws0YMMAVef9tsUcWXVGBp5-qN67QuISlxIv4-LjAxMN1wj-50R8g5hWsKjN-UtxRASS4YcKnlAcmo1LzQQrFDkgFTtmCG0WNyEuMWACQTPCN23mNoQ7vOy34IdXABm_zFj_23DJ9d_xbzRdwDc1yPbhPyZz9sulU8JUc1NtGf_eqELO7v5tPHYvb68DQtZ8UuFQyF5BKNszVWgIxV3rGVFcgsBaycRWMVZZpXxrnkGK80F6hqIxVqAAuST8jVT-6u7z5GH4fle4jONw22vhvjUgueOkCrRF7-S6ZXYD88gRd_wG039m1asaRWWyMFN_wL06xiyg</recordid><startdate>19990601</startdate><enddate>19990601</enddate><creator>Macleod, Chris</creator><creator>Geva Dror</creator><creator>Maxwell, Grant</creator><general>Springer Nature B.V</general><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>DWQXO</scope><scope>E3H</scope><scope>F2A</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M1O</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>19990601</creationdate><title>Training Artificial Neural Networks Using Taguchi Methods</title><author>Macleod, Chris ; Geva Dror ; Maxwell, Grant</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p243t-535a8c9fab0a22bec2d94a2910abc9a8961273b8ccc2d8e6734a6f856a7009053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Artificial intelligence</topic><topic>Cement</topic><topic>Experiments</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Optimization techniques</topic><topic>Taguchi methods</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Macleod, Chris</creatorcontrib><creatorcontrib>Geva Dror</creatorcontrib><creatorcontrib>Maxwell, Grant</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>Library & Information Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Library Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>The Artificial intelligence review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Macleod, Chris</au><au>Geva Dror</au><au>Maxwell, Grant</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Training Artificial Neural Networks Using Taguchi Methods</atitle><jtitle>The Artificial intelligence review</jtitle><date>1999-06-01</date><risdate>1999</risdate><volume>13</volume><issue>3</issue><spage>177</spage><epage>184</epage><pages>177-184</pages><issn>0269-2821</issn><eissn>1573-7462</eissn><abstract>This paper shows how the process optimization methods known as Taguchi methods may be applied to the training of Artificial Neural Networks. A comparison is made between the efficiency of training using Taguchi methods and the efficiency of conventional training methods; attention is drawn to the advantages of Taguchi methods. Further, it is shown that Taguchi methods offer potential benefits in evaluating network behaviour such as the ability to examine interaction of weights and neurons within a network.</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1023/A:1006534203575</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0269-2821 |
ispartof | The Artificial intelligence review, 1999-06, Vol.13 (3), p.177-184 |
issn | 0269-2821 1573-7462 |
language | eng |
recordid | cdi_proquest_miscellaneous_743535076 |
source | SpringerLink Journals - AutoHoldings |
subjects | Artificial intelligence Cement Experiments Neural networks Neurons Optimization techniques Taguchi methods Training |
title | Training Artificial Neural Networks Using Taguchi Methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T13%3A12%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Training%20Artificial%20Neural%20Networks%20Using%20Taguchi%20Methods&rft.jtitle=The%20Artificial%20intelligence%20review&rft.au=Macleod,%20Chris&rft.date=1999-06-01&rft.volume=13&rft.issue=3&rft.spage=177&rft.epage=184&rft.pages=177-184&rft.issn=0269-2821&rft.eissn=1573-7462&rft_id=info:doi/10.1023/A:1006534203575&rft_dat=%3Cproquest%3E57500005%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=197985438&rft_id=info:pmid/&rfr_iscdi=true |