Training Artificial Neural Networks Using Taguchi Methods

This paper shows how the process optimization methods known as Taguchi methods may be applied to the training of Artificial Neural Networks. A comparison is made between the efficiency of training using Taguchi methods and the efficiency of conventional training methods; attention is drawn to the ad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Artificial intelligence review 1999-06, Vol.13 (3), p.177-184
Hauptverfasser: Macleod, Chris, Geva Dror, Maxwell, Grant
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 184
container_issue 3
container_start_page 177
container_title The Artificial intelligence review
container_volume 13
creator Macleod, Chris
Geva Dror
Maxwell, Grant
description This paper shows how the process optimization methods known as Taguchi methods may be applied to the training of Artificial Neural Networks. A comparison is made between the efficiency of training using Taguchi methods and the efficiency of conventional training methods; attention is drawn to the advantages of Taguchi methods. Further, it is shown that Taguchi methods offer potential benefits in evaluating network behaviour such as the ability to examine interaction of weights and neurons within a network.
doi_str_mv 10.1023/A:1006534203575
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_743535076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>57500005</sourcerecordid><originalsourceid>FETCH-LOGICAL-p243t-535a8c9fab0a22bec2d94a2910abc9a8961273b8ccc2d8e6734a6f856a7009053</originalsourceid><addsrcrecordid>eNp9kD1PwzAYhC0EEqEws0YMMAVef9tsUcWXVGBp5-qN67QuISlxIv4-LjAxMN1wj-50R8g5hWsKjN-UtxRASS4YcKnlAcmo1LzQQrFDkgFTtmCG0WNyEuMWACQTPCN23mNoQ7vOy34IdXABm_zFj_23DJ9d_xbzRdwDc1yPbhPyZz9sulU8JUc1NtGf_eqELO7v5tPHYvb68DQtZ8UuFQyF5BKNszVWgIxV3rGVFcgsBaycRWMVZZpXxrnkGK80F6hqIxVqAAuST8jVT-6u7z5GH4fle4jONw22vhvjUgueOkCrRF7-S6ZXYD88gRd_wG039m1asaRWWyMFN_wL06xiyg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>197985438</pqid></control><display><type>article</type><title>Training Artificial Neural Networks Using Taguchi Methods</title><source>SpringerLink Journals - AutoHoldings</source><creator>Macleod, Chris ; Geva Dror ; Maxwell, Grant</creator><creatorcontrib>Macleod, Chris ; Geva Dror ; Maxwell, Grant</creatorcontrib><description>This paper shows how the process optimization methods known as Taguchi methods may be applied to the training of Artificial Neural Networks. A comparison is made between the efficiency of training using Taguchi methods and the efficiency of conventional training methods; attention is drawn to the advantages of Taguchi methods. Further, it is shown that Taguchi methods offer potential benefits in evaluating network behaviour such as the ability to examine interaction of weights and neurons within a network.</description><identifier>ISSN: 0269-2821</identifier><identifier>EISSN: 1573-7462</identifier><identifier>DOI: 10.1023/A:1006534203575</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Artificial intelligence ; Cement ; Experiments ; Neural networks ; Neurons ; Optimization techniques ; Taguchi methods ; Training</subject><ispartof>The Artificial intelligence review, 1999-06, Vol.13 (3), p.177-184</ispartof><rights>Kluwer Academic Publishers 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Macleod, Chris</creatorcontrib><creatorcontrib>Geva Dror</creatorcontrib><creatorcontrib>Maxwell, Grant</creatorcontrib><title>Training Artificial Neural Networks Using Taguchi Methods</title><title>The Artificial intelligence review</title><description>This paper shows how the process optimization methods known as Taguchi methods may be applied to the training of Artificial Neural Networks. A comparison is made between the efficiency of training using Taguchi methods and the efficiency of conventional training methods; attention is drawn to the advantages of Taguchi methods. Further, it is shown that Taguchi methods offer potential benefits in evaluating network behaviour such as the ability to examine interaction of weights and neurons within a network.</description><subject>Artificial intelligence</subject><subject>Cement</subject><subject>Experiments</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Optimization techniques</subject><subject>Taguchi methods</subject><subject>Training</subject><issn>0269-2821</issn><issn>1573-7462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kD1PwzAYhC0EEqEws0YMMAVef9tsUcWXVGBp5-qN67QuISlxIv4-LjAxMN1wj-50R8g5hWsKjN-UtxRASS4YcKnlAcmo1LzQQrFDkgFTtmCG0WNyEuMWACQTPCN23mNoQ7vOy34IdXABm_zFj_23DJ9d_xbzRdwDc1yPbhPyZz9sulU8JUc1NtGf_eqELO7v5tPHYvb68DQtZ8UuFQyF5BKNszVWgIxV3rGVFcgsBaycRWMVZZpXxrnkGK80F6hqIxVqAAuST8jVT-6u7z5GH4fle4jONw22vhvjUgueOkCrRF7-S6ZXYD88gRd_wG039m1asaRWWyMFN_wL06xiyg</recordid><startdate>19990601</startdate><enddate>19990601</enddate><creator>Macleod, Chris</creator><creator>Geva Dror</creator><creator>Maxwell, Grant</creator><general>Springer Nature B.V</general><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>DWQXO</scope><scope>E3H</scope><scope>F2A</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M1O</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>19990601</creationdate><title>Training Artificial Neural Networks Using Taguchi Methods</title><author>Macleod, Chris ; Geva Dror ; Maxwell, Grant</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p243t-535a8c9fab0a22bec2d94a2910abc9a8961273b8ccc2d8e6734a6f856a7009053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Artificial intelligence</topic><topic>Cement</topic><topic>Experiments</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Optimization techniques</topic><topic>Taguchi methods</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Macleod, Chris</creatorcontrib><creatorcontrib>Geva Dror</creatorcontrib><creatorcontrib>Maxwell, Grant</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>Library &amp; Information Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Library Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>The Artificial intelligence review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Macleod, Chris</au><au>Geva Dror</au><au>Maxwell, Grant</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Training Artificial Neural Networks Using Taguchi Methods</atitle><jtitle>The Artificial intelligence review</jtitle><date>1999-06-01</date><risdate>1999</risdate><volume>13</volume><issue>3</issue><spage>177</spage><epage>184</epage><pages>177-184</pages><issn>0269-2821</issn><eissn>1573-7462</eissn><abstract>This paper shows how the process optimization methods known as Taguchi methods may be applied to the training of Artificial Neural Networks. A comparison is made between the efficiency of training using Taguchi methods and the efficiency of conventional training methods; attention is drawn to the advantages of Taguchi methods. Further, it is shown that Taguchi methods offer potential benefits in evaluating network behaviour such as the ability to examine interaction of weights and neurons within a network.</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1023/A:1006534203575</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0269-2821
ispartof The Artificial intelligence review, 1999-06, Vol.13 (3), p.177-184
issn 0269-2821
1573-7462
language eng
recordid cdi_proquest_miscellaneous_743535076
source SpringerLink Journals - AutoHoldings
subjects Artificial intelligence
Cement
Experiments
Neural networks
Neurons
Optimization techniques
Taguchi methods
Training
title Training Artificial Neural Networks Using Taguchi Methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T13%3A12%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Training%20Artificial%20Neural%20Networks%20Using%20Taguchi%20Methods&rft.jtitle=The%20Artificial%20intelligence%20review&rft.au=Macleod,%20Chris&rft.date=1999-06-01&rft.volume=13&rft.issue=3&rft.spage=177&rft.epage=184&rft.pages=177-184&rft.issn=0269-2821&rft.eissn=1573-7462&rft_id=info:doi/10.1023/A:1006534203575&rft_dat=%3Cproquest%3E57500005%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=197985438&rft_id=info:pmid/&rfr_iscdi=true