Time slot scheduling of compatible jobs

A version of weighted coloring of a graph is introduced which is motivated by some types of scheduling problems: each node v of a graph G corresponds to some operation to be processed (with a processing time w(v)), edges represent nonsimultaneity requirements (incompatibilities). We have to assign e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of scheduling 2007-04, Vol.10 (2), p.111-127
Hauptverfasser: Demange, M, de Werra, D, Monnot, J, Paschos, V Th
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 127
container_issue 2
container_start_page 111
container_title Journal of scheduling
container_volume 10
creator Demange, M
de Werra, D
Monnot, J
Paschos, V Th
description A version of weighted coloring of a graph is introduced which is motivated by some types of scheduling problems: each node v of a graph G corresponds to some operation to be processed (with a processing time w(v)), edges represent nonsimultaneity requirements (incompatibilities). We have to assign each operation to one time slot in such a way that in each time slot, all operations assigned to this slot are compatible; the length of a time slot will be the maximum of the processing times of its operations. The number k of time slots to be used has to be determined as well. So, we have to find a k-coloring ... of G such that ... is minimized where ... . Properties of optimal solutions are discussed, and complexity and approximability results are presented. Heuristic methods are given for establishing some of these results. The associated decision problems are shown to be NP-complete for bipartite graphs, for line-graphs of bipartite graphs, and for split graphs. (ProQuest: ... denotes formulae omitted)
doi_str_mv 10.1007/s10951-006-0003-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743528775</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>36292325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-51e03fa94d96fe3389fe109e70e14c14d69ed04cabacf55d33d60ea5105be2083</originalsourceid><addsrcrecordid>eNp9kDtPwzAQgC0EEqXwA9giBjoZzq84HlFFAakSS5ktxzlDqqQucTLw73EpEwODddbdp3t8hFwzuGMA-j4xMIpRgDI_EFSfkFlOGcokV6c_f0lLJspzcpHSNjOV5mxGFpu2xyJ1cSyS_8Bm6trdexFD4WO_d2Nbd1hsY50uyVlwXcKr3zgnb6vHzfKZrl-fXpYPa-qFrkaqGIIIzsjGlAGFqEzAPBo1IJOeyaY02ID0rnY-KNUI0ZSATjFQNXKoxJwsjn33Q_ycMI22b5PHrnM7jFOyWgrFK61VJm__JUXJDRf8AN78AbdxGnb5CpvrkucldYbYEfJDTGnAYPdD27vhyzKwB8P2aNhmw_Zg2GrxDSwhbCc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>232423897</pqid></control><display><type>article</type><title>Time slot scheduling of compatible jobs</title><source>SpringerLink Journals - AutoHoldings</source><creator>Demange, M ; de Werra, D ; Monnot, J ; Paschos, V Th</creator><creatorcontrib>Demange, M ; de Werra, D ; Monnot, J ; Paschos, V Th</creatorcontrib><description>A version of weighted coloring of a graph is introduced which is motivated by some types of scheduling problems: each node v of a graph G corresponds to some operation to be processed (with a processing time w(v)), edges represent nonsimultaneity requirements (incompatibilities). We have to assign each operation to one time slot in such a way that in each time slot, all operations assigned to this slot are compatible; the length of a time slot will be the maximum of the processing times of its operations. The number k of time slots to be used has to be determined as well. So, we have to find a k-coloring ... of G such that ... is minimized where ... . Properties of optimal solutions are discussed, and complexity and approximability results are presented. Heuristic methods are given for establishing some of these results. The associated decision problems are shown to be NP-complete for bipartite graphs, for line-graphs of bipartite graphs, and for split graphs. (ProQuest: ... denotes formulae omitted)</description><identifier>ISSN: 1094-6136</identifier><identifier>EISSN: 1099-1425</identifier><identifier>DOI: 10.1007/s10951-006-0003-7</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Algorithms ; Approximation ; Graph coloring ; Graph theory ; Heuristic ; Job shops ; Scheduling ; Studies</subject><ispartof>Journal of scheduling, 2007-04, Vol.10 (2), p.111-127</ispartof><rights>Springer Science+Business Media, LLC 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-51e03fa94d96fe3389fe109e70e14c14d69ed04cabacf55d33d60ea5105be2083</citedby><cites>FETCH-LOGICAL-c378t-51e03fa94d96fe3389fe109e70e14c14d69ed04cabacf55d33d60ea5105be2083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27906,27907</link.rule.ids></links><search><creatorcontrib>Demange, M</creatorcontrib><creatorcontrib>de Werra, D</creatorcontrib><creatorcontrib>Monnot, J</creatorcontrib><creatorcontrib>Paschos, V Th</creatorcontrib><title>Time slot scheduling of compatible jobs</title><title>Journal of scheduling</title><description>A version of weighted coloring of a graph is introduced which is motivated by some types of scheduling problems: each node v of a graph G corresponds to some operation to be processed (with a processing time w(v)), edges represent nonsimultaneity requirements (incompatibilities). We have to assign each operation to one time slot in such a way that in each time slot, all operations assigned to this slot are compatible; the length of a time slot will be the maximum of the processing times of its operations. The number k of time slots to be used has to be determined as well. So, we have to find a k-coloring ... of G such that ... is minimized where ... . Properties of optimal solutions are discussed, and complexity and approximability results are presented. Heuristic methods are given for establishing some of these results. The associated decision problems are shown to be NP-complete for bipartite graphs, for line-graphs of bipartite graphs, and for split graphs. (ProQuest: ... denotes formulae omitted)</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Graph coloring</subject><subject>Graph theory</subject><subject>Heuristic</subject><subject>Job shops</subject><subject>Scheduling</subject><subject>Studies</subject><issn>1094-6136</issn><issn>1099-1425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kDtPwzAQgC0EEqXwA9giBjoZzq84HlFFAakSS5ktxzlDqqQucTLw73EpEwODddbdp3t8hFwzuGMA-j4xMIpRgDI_EFSfkFlOGcokV6c_f0lLJspzcpHSNjOV5mxGFpu2xyJ1cSyS_8Bm6trdexFD4WO_d2Nbd1hsY50uyVlwXcKr3zgnb6vHzfKZrl-fXpYPa-qFrkaqGIIIzsjGlAGFqEzAPBo1IJOeyaY02ID0rnY-KNUI0ZSATjFQNXKoxJwsjn33Q_ycMI22b5PHrnM7jFOyWgrFK61VJm__JUXJDRf8AN78AbdxGnb5CpvrkucldYbYEfJDTGnAYPdD27vhyzKwB8P2aNhmw_Zg2GrxDSwhbCc</recordid><startdate>20070401</startdate><enddate>20070401</enddate><creator>Demange, M</creator><creator>de Werra, D</creator><creator>Monnot, J</creator><creator>Paschos, V Th</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7TA</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88C</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M0T</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20070401</creationdate><title>Time slot scheduling of compatible jobs</title><author>Demange, M ; de Werra, D ; Monnot, J ; Paschos, V Th</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-51e03fa94d96fe3389fe109e70e14c14d69ed04cabacf55d33d60ea5105be2083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Graph coloring</topic><topic>Graph theory</topic><topic>Heuristic</topic><topic>Job shops</topic><topic>Scheduling</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Demange, M</creatorcontrib><creatorcontrib>de Werra, D</creatorcontrib><creatorcontrib>Monnot, J</creatorcontrib><creatorcontrib>Paschos, V Th</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of scheduling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Demange, M</au><au>de Werra, D</au><au>Monnot, J</au><au>Paschos, V Th</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time slot scheduling of compatible jobs</atitle><jtitle>Journal of scheduling</jtitle><date>2007-04-01</date><risdate>2007</risdate><volume>10</volume><issue>2</issue><spage>111</spage><epage>127</epage><pages>111-127</pages><issn>1094-6136</issn><eissn>1099-1425</eissn><abstract>A version of weighted coloring of a graph is introduced which is motivated by some types of scheduling problems: each node v of a graph G corresponds to some operation to be processed (with a processing time w(v)), edges represent nonsimultaneity requirements (incompatibilities). We have to assign each operation to one time slot in such a way that in each time slot, all operations assigned to this slot are compatible; the length of a time slot will be the maximum of the processing times of its operations. The number k of time slots to be used has to be determined as well. So, we have to find a k-coloring ... of G such that ... is minimized where ... . Properties of optimal solutions are discussed, and complexity and approximability results are presented. Heuristic methods are given for establishing some of these results. The associated decision problems are shown to be NP-complete for bipartite graphs, for line-graphs of bipartite graphs, and for split graphs. (ProQuest: ... denotes formulae omitted)</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1007/s10951-006-0003-7</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1094-6136
ispartof Journal of scheduling, 2007-04, Vol.10 (2), p.111-127
issn 1094-6136
1099-1425
language eng
recordid cdi_proquest_miscellaneous_743528775
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Approximation
Graph coloring
Graph theory
Heuristic
Job shops
Scheduling
Studies
title Time slot scheduling of compatible jobs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A12%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time%20slot%20scheduling%20of%20compatible%20jobs&rft.jtitle=Journal%20of%20scheduling&rft.au=Demange,%20M&rft.date=2007-04-01&rft.volume=10&rft.issue=2&rft.spage=111&rft.epage=127&rft.pages=111-127&rft.issn=1094-6136&rft.eissn=1099-1425&rft_id=info:doi/10.1007/s10951-006-0003-7&rft_dat=%3Cproquest_cross%3E36292325%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=232423897&rft_id=info:pmid/&rfr_iscdi=true