The role of magnetic anisotropy in the Kondo effect
In the Kondo effect, a localized magnetic moment is screened by forming a correlated electron system with the surrounding conduction electrons of a non-magnetic host. Spin S=1/2 Kondo systems have been investigated extensively in theory and experiments, but magnetic atoms often have a larger spin. L...
Gespeichert in:
Veröffentlicht in: | Nature physics 2008-11, Vol.4 (11), p.847-850 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 850 |
---|---|
container_issue | 11 |
container_start_page | 847 |
container_title | Nature physics |
container_volume | 4 |
creator | Heinrich, Andreas J Otte, Alexander F Ternes, Markus von Bergmann, Kirsten Loth, Sebastian Brune, Harald Lutz, Christopher P Hirjibehedin, Cyrus F |
description | In the Kondo effect, a localized magnetic moment is screened by forming a correlated electron system with the surrounding conduction electrons of a non-magnetic host. Spin S=1/2 Kondo systems have been investigated extensively in theory and experiments, but magnetic atoms often have a larger spin. Larger spins are subject to the influence of magnetocrystalline anisotropy, which describes the dependence of the magnetic moment's energy on the orientation of the spin relative to its surrounding atomic environment. Here we demonstrate the decisive role of magnetic anisotropy in the physics of Kondo screening. A scanning tunnelling microscope is used to simultaneously determine the magnitude of the spin, the magnetic anisotropy and the Kondo properties of individual magnetic atoms on a surface. We find that a Kondo resonance emerges for large-spin atoms only when the magnetic anisotropy creates degenerate ground-state levels that are connected by the spin flip of a screening electron. The magnetic anisotropy also determines how the Kondo resonance evolves in a magnetic field: the resonance peak splits at rates that are strongly direction dependent. These rates are well described by the energies of the underlying unscreened spin states. |
doi_str_mv | 10.1038/nphys1072 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743516546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1588637201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-bd6f457bb832f0b8a8f0b062c65631edbdb39cf426ad1432096b9d2fac023d513</originalsourceid><addsrcrecordid>eNpt0MtKxDAUBuAgCo6jC5_A4kYUqrm3XcrgDQfcjOuQpslMh05Sk3TRtzdSGUXcnHMWHz-HH4BzBG8RJOWd7TdjQLDAB2CGCspyTEt0uL8LcgxOQthCSDFHZAbIaqMz7zqdOZPt5Nrq2KpM2ja46F0_Zq3NYiKvzjYu08ZoFU_BkZFd0Gffew7eHx9Wi-d8-fb0srhf5orSMuZ1ww1lRV2XBBtYl7JME3KsOOME6aZualIpkx6RDaIEw4rXVYONVBCThiEyB1dTbu_dx6BDFLs2KN110mo3BFFQwhBnlCd5-Udu3eBtek6ginJWIVYkdD0h5V0IXhvR-3Yn_SgQFF_liX15yd5MNiRj19r_CvwHX0zYyjh4vY_9EZ-vWnro</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194659157</pqid></control><display><type>article</type><title>The role of magnetic anisotropy in the Kondo effect</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Heinrich, Andreas J ; Otte, Alexander F ; Ternes, Markus ; von Bergmann, Kirsten ; Loth, Sebastian ; Brune, Harald ; Lutz, Christopher P ; Hirjibehedin, Cyrus F</creator><creatorcontrib>Heinrich, Andreas J ; Otte, Alexander F ; Ternes, Markus ; von Bergmann, Kirsten ; Loth, Sebastian ; Brune, Harald ; Lutz, Christopher P ; Hirjibehedin, Cyrus F</creatorcontrib><description>In the Kondo effect, a localized magnetic moment is screened by forming a correlated electron system with the surrounding conduction electrons of a non-magnetic host. Spin S=1/2 Kondo systems have been investigated extensively in theory and experiments, but magnetic atoms often have a larger spin. Larger spins are subject to the influence of magnetocrystalline anisotropy, which describes the dependence of the magnetic moment's energy on the orientation of the spin relative to its surrounding atomic environment. Here we demonstrate the decisive role of magnetic anisotropy in the physics of Kondo screening. A scanning tunnelling microscope is used to simultaneously determine the magnitude of the spin, the magnetic anisotropy and the Kondo properties of individual magnetic atoms on a surface. We find that a Kondo resonance emerges for large-spin atoms only when the magnetic anisotropy creates degenerate ground-state levels that are connected by the spin flip of a screening electron. The magnetic anisotropy also determines how the Kondo resonance evolves in a magnetic field: the resonance peak splits at rates that are strongly direction dependent. These rates are well described by the energies of the underlying unscreened spin states.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/nphys1072</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Anisotropy ; Atomic ; Atoms & subatomic particles ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Conductivity ; letter ; Magnetic fields ; Magnetism ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Resonance ; Theoretical</subject><ispartof>Nature physics, 2008-11, Vol.4 (11), p.847-850</ispartof><rights>Springer Nature Limited 2008</rights><rights>Copyright Nature Publishing Group Nov 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-bd6f457bb832f0b8a8f0b062c65631edbdb39cf426ad1432096b9d2fac023d513</citedby><cites>FETCH-LOGICAL-c448t-bd6f457bb832f0b8a8f0b062c65631edbdb39cf426ad1432096b9d2fac023d513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nphys1072$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nphys1072$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Heinrich, Andreas J</creatorcontrib><creatorcontrib>Otte, Alexander F</creatorcontrib><creatorcontrib>Ternes, Markus</creatorcontrib><creatorcontrib>von Bergmann, Kirsten</creatorcontrib><creatorcontrib>Loth, Sebastian</creatorcontrib><creatorcontrib>Brune, Harald</creatorcontrib><creatorcontrib>Lutz, Christopher P</creatorcontrib><creatorcontrib>Hirjibehedin, Cyrus F</creatorcontrib><title>The role of magnetic anisotropy in the Kondo effect</title><title>Nature physics</title><addtitle>Nature Phys</addtitle><description>In the Kondo effect, a localized magnetic moment is screened by forming a correlated electron system with the surrounding conduction electrons of a non-magnetic host. Spin S=1/2 Kondo systems have been investigated extensively in theory and experiments, but magnetic atoms often have a larger spin. Larger spins are subject to the influence of magnetocrystalline anisotropy, which describes the dependence of the magnetic moment's energy on the orientation of the spin relative to its surrounding atomic environment. Here we demonstrate the decisive role of magnetic anisotropy in the physics of Kondo screening. A scanning tunnelling microscope is used to simultaneously determine the magnitude of the spin, the magnetic anisotropy and the Kondo properties of individual magnetic atoms on a surface. We find that a Kondo resonance emerges for large-spin atoms only when the magnetic anisotropy creates degenerate ground-state levels that are connected by the spin flip of a screening electron. The magnetic anisotropy also determines how the Kondo resonance evolves in a magnetic field: the resonance peak splits at rates that are strongly direction dependent. These rates are well described by the energies of the underlying unscreened spin states.</description><subject>Anisotropy</subject><subject>Atomic</subject><subject>Atoms & subatomic particles</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Conductivity</subject><subject>letter</subject><subject>Magnetic fields</subject><subject>Magnetism</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Resonance</subject><subject>Theoretical</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpt0MtKxDAUBuAgCo6jC5_A4kYUqrm3XcrgDQfcjOuQpslMh05Sk3TRtzdSGUXcnHMWHz-HH4BzBG8RJOWd7TdjQLDAB2CGCspyTEt0uL8LcgxOQthCSDFHZAbIaqMz7zqdOZPt5Nrq2KpM2ja46F0_Zq3NYiKvzjYu08ZoFU_BkZFd0Gffew7eHx9Wi-d8-fb0srhf5orSMuZ1ww1lRV2XBBtYl7JME3KsOOME6aZualIpkx6RDaIEw4rXVYONVBCThiEyB1dTbu_dx6BDFLs2KN110mo3BFFQwhBnlCd5-Udu3eBtek6ginJWIVYkdD0h5V0IXhvR-3Yn_SgQFF_liX15yd5MNiRj19r_CvwHX0zYyjh4vY_9EZ-vWnro</recordid><startdate>20081101</startdate><enddate>20081101</enddate><creator>Heinrich, Andreas J</creator><creator>Otte, Alexander F</creator><creator>Ternes, Markus</creator><creator>von Bergmann, Kirsten</creator><creator>Loth, Sebastian</creator><creator>Brune, Harald</creator><creator>Lutz, Christopher P</creator><creator>Hirjibehedin, Cyrus F</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20081101</creationdate><title>The role of magnetic anisotropy in the Kondo effect</title><author>Heinrich, Andreas J ; Otte, Alexander F ; Ternes, Markus ; von Bergmann, Kirsten ; Loth, Sebastian ; Brune, Harald ; Lutz, Christopher P ; Hirjibehedin, Cyrus F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-bd6f457bb832f0b8a8f0b062c65631edbdb39cf426ad1432096b9d2fac023d513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Anisotropy</topic><topic>Atomic</topic><topic>Atoms & subatomic particles</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Conductivity</topic><topic>letter</topic><topic>Magnetic fields</topic><topic>Magnetism</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Resonance</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heinrich, Andreas J</creatorcontrib><creatorcontrib>Otte, Alexander F</creatorcontrib><creatorcontrib>Ternes, Markus</creatorcontrib><creatorcontrib>von Bergmann, Kirsten</creatorcontrib><creatorcontrib>Loth, Sebastian</creatorcontrib><creatorcontrib>Brune, Harald</creatorcontrib><creatorcontrib>Lutz, Christopher P</creatorcontrib><creatorcontrib>Hirjibehedin, Cyrus F</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heinrich, Andreas J</au><au>Otte, Alexander F</au><au>Ternes, Markus</au><au>von Bergmann, Kirsten</au><au>Loth, Sebastian</au><au>Brune, Harald</au><au>Lutz, Christopher P</au><au>Hirjibehedin, Cyrus F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of magnetic anisotropy in the Kondo effect</atitle><jtitle>Nature physics</jtitle><stitle>Nature Phys</stitle><date>2008-11-01</date><risdate>2008</risdate><volume>4</volume><issue>11</issue><spage>847</spage><epage>850</epage><pages>847-850</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>In the Kondo effect, a localized magnetic moment is screened by forming a correlated electron system with the surrounding conduction electrons of a non-magnetic host. Spin S=1/2 Kondo systems have been investigated extensively in theory and experiments, but magnetic atoms often have a larger spin. Larger spins are subject to the influence of magnetocrystalline anisotropy, which describes the dependence of the magnetic moment's energy on the orientation of the spin relative to its surrounding atomic environment. Here we demonstrate the decisive role of magnetic anisotropy in the physics of Kondo screening. A scanning tunnelling microscope is used to simultaneously determine the magnitude of the spin, the magnetic anisotropy and the Kondo properties of individual magnetic atoms on a surface. We find that a Kondo resonance emerges for large-spin atoms only when the magnetic anisotropy creates degenerate ground-state levels that are connected by the spin flip of a screening electron. The magnetic anisotropy also determines how the Kondo resonance evolves in a magnetic field: the resonance peak splits at rates that are strongly direction dependent. These rates are well described by the energies of the underlying unscreened spin states.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphys1072</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-2473 |
ispartof | Nature physics, 2008-11, Vol.4 (11), p.847-850 |
issn | 1745-2473 1745-2481 |
language | eng |
recordid | cdi_proquest_miscellaneous_743516546 |
source | Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | Anisotropy Atomic Atoms & subatomic particles Classical and Continuum Physics Complex Systems Condensed Matter Physics Conductivity letter Magnetic fields Magnetism Mathematical and Computational Physics Molecular Optical and Plasma Physics Physics Physics and Astronomy Resonance Theoretical |
title | The role of magnetic anisotropy in the Kondo effect |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T00%3A19%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20magnetic%20anisotropy%20in%20the%20Kondo%20effect&rft.jtitle=Nature%20physics&rft.au=Heinrich,%20Andreas%20J&rft.date=2008-11-01&rft.volume=4&rft.issue=11&rft.spage=847&rft.epage=850&rft.pages=847-850&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/nphys1072&rft_dat=%3Cproquest_cross%3E1588637201%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=194659157&rft_id=info:pmid/&rfr_iscdi=true |