The role of magnetic anisotropy in the Kondo effect

In the Kondo effect, a localized magnetic moment is screened by forming a correlated electron system with the surrounding conduction electrons of a non-magnetic host. Spin S=1/2 Kondo systems have been investigated extensively in theory and experiments, but magnetic atoms often have a larger spin. L...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2008-11, Vol.4 (11), p.847-850
Hauptverfasser: Heinrich, Andreas J, Otte, Alexander F, Ternes, Markus, von Bergmann, Kirsten, Loth, Sebastian, Brune, Harald, Lutz, Christopher P, Hirjibehedin, Cyrus F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 850
container_issue 11
container_start_page 847
container_title Nature physics
container_volume 4
creator Heinrich, Andreas J
Otte, Alexander F
Ternes, Markus
von Bergmann, Kirsten
Loth, Sebastian
Brune, Harald
Lutz, Christopher P
Hirjibehedin, Cyrus F
description In the Kondo effect, a localized magnetic moment is screened by forming a correlated electron system with the surrounding conduction electrons of a non-magnetic host. Spin S=1/2 Kondo systems have been investigated extensively in theory and experiments, but magnetic atoms often have a larger spin. Larger spins are subject to the influence of magnetocrystalline anisotropy, which describes the dependence of the magnetic moment's energy on the orientation of the spin relative to its surrounding atomic environment. Here we demonstrate the decisive role of magnetic anisotropy in the physics of Kondo screening. A scanning tunnelling microscope is used to simultaneously determine the magnitude of the spin, the magnetic anisotropy and the Kondo properties of individual magnetic atoms on a surface. We find that a Kondo resonance emerges for large-spin atoms only when the magnetic anisotropy creates degenerate ground-state levels that are connected by the spin flip of a screening electron. The magnetic anisotropy also determines how the Kondo resonance evolves in a magnetic field: the resonance peak splits at rates that are strongly direction dependent. These rates are well described by the energies of the underlying unscreened spin states.
doi_str_mv 10.1038/nphys1072
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743516546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1588637201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-bd6f457bb832f0b8a8f0b062c65631edbdb39cf426ad1432096b9d2fac023d513</originalsourceid><addsrcrecordid>eNpt0MtKxDAUBuAgCo6jC5_A4kYUqrm3XcrgDQfcjOuQpslMh05Sk3TRtzdSGUXcnHMWHz-HH4BzBG8RJOWd7TdjQLDAB2CGCspyTEt0uL8LcgxOQthCSDFHZAbIaqMz7zqdOZPt5Nrq2KpM2ja46F0_Zq3NYiKvzjYu08ZoFU_BkZFd0Gffew7eHx9Wi-d8-fb0srhf5orSMuZ1ww1lRV2XBBtYl7JME3KsOOME6aZualIpkx6RDaIEw4rXVYONVBCThiEyB1dTbu_dx6BDFLs2KN110mo3BFFQwhBnlCd5-Udu3eBtek6ginJWIVYkdD0h5V0IXhvR-3Yn_SgQFF_liX15yd5MNiRj19r_CvwHX0zYyjh4vY_9EZ-vWnro</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194659157</pqid></control><display><type>article</type><title>The role of magnetic anisotropy in the Kondo effect</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Heinrich, Andreas J ; Otte, Alexander F ; Ternes, Markus ; von Bergmann, Kirsten ; Loth, Sebastian ; Brune, Harald ; Lutz, Christopher P ; Hirjibehedin, Cyrus F</creator><creatorcontrib>Heinrich, Andreas J ; Otte, Alexander F ; Ternes, Markus ; von Bergmann, Kirsten ; Loth, Sebastian ; Brune, Harald ; Lutz, Christopher P ; Hirjibehedin, Cyrus F</creatorcontrib><description>In the Kondo effect, a localized magnetic moment is screened by forming a correlated electron system with the surrounding conduction electrons of a non-magnetic host. Spin S=1/2 Kondo systems have been investigated extensively in theory and experiments, but magnetic atoms often have a larger spin. Larger spins are subject to the influence of magnetocrystalline anisotropy, which describes the dependence of the magnetic moment's energy on the orientation of the spin relative to its surrounding atomic environment. Here we demonstrate the decisive role of magnetic anisotropy in the physics of Kondo screening. A scanning tunnelling microscope is used to simultaneously determine the magnitude of the spin, the magnetic anisotropy and the Kondo properties of individual magnetic atoms on a surface. We find that a Kondo resonance emerges for large-spin atoms only when the magnetic anisotropy creates degenerate ground-state levels that are connected by the spin flip of a screening electron. The magnetic anisotropy also determines how the Kondo resonance evolves in a magnetic field: the resonance peak splits at rates that are strongly direction dependent. These rates are well described by the energies of the underlying unscreened spin states.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/nphys1072</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Anisotropy ; Atomic ; Atoms &amp; subatomic particles ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Conductivity ; letter ; Magnetic fields ; Magnetism ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Resonance ; Theoretical</subject><ispartof>Nature physics, 2008-11, Vol.4 (11), p.847-850</ispartof><rights>Springer Nature Limited 2008</rights><rights>Copyright Nature Publishing Group Nov 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-bd6f457bb832f0b8a8f0b062c65631edbdb39cf426ad1432096b9d2fac023d513</citedby><cites>FETCH-LOGICAL-c448t-bd6f457bb832f0b8a8f0b062c65631edbdb39cf426ad1432096b9d2fac023d513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nphys1072$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nphys1072$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Heinrich, Andreas J</creatorcontrib><creatorcontrib>Otte, Alexander F</creatorcontrib><creatorcontrib>Ternes, Markus</creatorcontrib><creatorcontrib>von Bergmann, Kirsten</creatorcontrib><creatorcontrib>Loth, Sebastian</creatorcontrib><creatorcontrib>Brune, Harald</creatorcontrib><creatorcontrib>Lutz, Christopher P</creatorcontrib><creatorcontrib>Hirjibehedin, Cyrus F</creatorcontrib><title>The role of magnetic anisotropy in the Kondo effect</title><title>Nature physics</title><addtitle>Nature Phys</addtitle><description>In the Kondo effect, a localized magnetic moment is screened by forming a correlated electron system with the surrounding conduction electrons of a non-magnetic host. Spin S=1/2 Kondo systems have been investigated extensively in theory and experiments, but magnetic atoms often have a larger spin. Larger spins are subject to the influence of magnetocrystalline anisotropy, which describes the dependence of the magnetic moment's energy on the orientation of the spin relative to its surrounding atomic environment. Here we demonstrate the decisive role of magnetic anisotropy in the physics of Kondo screening. A scanning tunnelling microscope is used to simultaneously determine the magnitude of the spin, the magnetic anisotropy and the Kondo properties of individual magnetic atoms on a surface. We find that a Kondo resonance emerges for large-spin atoms only when the magnetic anisotropy creates degenerate ground-state levels that are connected by the spin flip of a screening electron. The magnetic anisotropy also determines how the Kondo resonance evolves in a magnetic field: the resonance peak splits at rates that are strongly direction dependent. These rates are well described by the energies of the underlying unscreened spin states.</description><subject>Anisotropy</subject><subject>Atomic</subject><subject>Atoms &amp; subatomic particles</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Conductivity</subject><subject>letter</subject><subject>Magnetic fields</subject><subject>Magnetism</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Resonance</subject><subject>Theoretical</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpt0MtKxDAUBuAgCo6jC5_A4kYUqrm3XcrgDQfcjOuQpslMh05Sk3TRtzdSGUXcnHMWHz-HH4BzBG8RJOWd7TdjQLDAB2CGCspyTEt0uL8LcgxOQthCSDFHZAbIaqMz7zqdOZPt5Nrq2KpM2ja46F0_Zq3NYiKvzjYu08ZoFU_BkZFd0Gffew7eHx9Wi-d8-fb0srhf5orSMuZ1ww1lRV2XBBtYl7JME3KsOOME6aZualIpkx6RDaIEw4rXVYONVBCThiEyB1dTbu_dx6BDFLs2KN110mo3BFFQwhBnlCd5-Udu3eBtek6ginJWIVYkdD0h5V0IXhvR-3Yn_SgQFF_liX15yd5MNiRj19r_CvwHX0zYyjh4vY_9EZ-vWnro</recordid><startdate>20081101</startdate><enddate>20081101</enddate><creator>Heinrich, Andreas J</creator><creator>Otte, Alexander F</creator><creator>Ternes, Markus</creator><creator>von Bergmann, Kirsten</creator><creator>Loth, Sebastian</creator><creator>Brune, Harald</creator><creator>Lutz, Christopher P</creator><creator>Hirjibehedin, Cyrus F</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20081101</creationdate><title>The role of magnetic anisotropy in the Kondo effect</title><author>Heinrich, Andreas J ; Otte, Alexander F ; Ternes, Markus ; von Bergmann, Kirsten ; Loth, Sebastian ; Brune, Harald ; Lutz, Christopher P ; Hirjibehedin, Cyrus F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-bd6f457bb832f0b8a8f0b062c65631edbdb39cf426ad1432096b9d2fac023d513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Anisotropy</topic><topic>Atomic</topic><topic>Atoms &amp; subatomic particles</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Conductivity</topic><topic>letter</topic><topic>Magnetic fields</topic><topic>Magnetism</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Resonance</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heinrich, Andreas J</creatorcontrib><creatorcontrib>Otte, Alexander F</creatorcontrib><creatorcontrib>Ternes, Markus</creatorcontrib><creatorcontrib>von Bergmann, Kirsten</creatorcontrib><creatorcontrib>Loth, Sebastian</creatorcontrib><creatorcontrib>Brune, Harald</creatorcontrib><creatorcontrib>Lutz, Christopher P</creatorcontrib><creatorcontrib>Hirjibehedin, Cyrus F</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heinrich, Andreas J</au><au>Otte, Alexander F</au><au>Ternes, Markus</au><au>von Bergmann, Kirsten</au><au>Loth, Sebastian</au><au>Brune, Harald</au><au>Lutz, Christopher P</au><au>Hirjibehedin, Cyrus F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of magnetic anisotropy in the Kondo effect</atitle><jtitle>Nature physics</jtitle><stitle>Nature Phys</stitle><date>2008-11-01</date><risdate>2008</risdate><volume>4</volume><issue>11</issue><spage>847</spage><epage>850</epage><pages>847-850</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>In the Kondo effect, a localized magnetic moment is screened by forming a correlated electron system with the surrounding conduction electrons of a non-magnetic host. Spin S=1/2 Kondo systems have been investigated extensively in theory and experiments, but magnetic atoms often have a larger spin. Larger spins are subject to the influence of magnetocrystalline anisotropy, which describes the dependence of the magnetic moment's energy on the orientation of the spin relative to its surrounding atomic environment. Here we demonstrate the decisive role of magnetic anisotropy in the physics of Kondo screening. A scanning tunnelling microscope is used to simultaneously determine the magnitude of the spin, the magnetic anisotropy and the Kondo properties of individual magnetic atoms on a surface. We find that a Kondo resonance emerges for large-spin atoms only when the magnetic anisotropy creates degenerate ground-state levels that are connected by the spin flip of a screening electron. The magnetic anisotropy also determines how the Kondo resonance evolves in a magnetic field: the resonance peak splits at rates that are strongly direction dependent. These rates are well described by the energies of the underlying unscreened spin states.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphys1072</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2008-11, Vol.4 (11), p.847-850
issn 1745-2473
1745-2481
language eng
recordid cdi_proquest_miscellaneous_743516546
source Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects Anisotropy
Atomic
Atoms & subatomic particles
Classical and Continuum Physics
Complex Systems
Condensed Matter Physics
Conductivity
letter
Magnetic fields
Magnetism
Mathematical and Computational Physics
Molecular
Optical and Plasma Physics
Physics
Physics and Astronomy
Resonance
Theoretical
title The role of magnetic anisotropy in the Kondo effect
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T00%3A19%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20magnetic%20anisotropy%20in%20the%20Kondo%20effect&rft.jtitle=Nature%20physics&rft.au=Heinrich,%20Andreas%20J&rft.date=2008-11-01&rft.volume=4&rft.issue=11&rft.spage=847&rft.epage=850&rft.pages=847-850&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/nphys1072&rft_dat=%3Cproquest_cross%3E1588637201%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=194659157&rft_id=info:pmid/&rfr_iscdi=true