Formation of Warm Dense Matter: Experimental Evidence for Electronic Bond Hardening in Gold

Under strong optical excitation conditions, it is possible to create highly nonequilibrium states of matter. The nuclear response is determined by the rate of energy transfer from the excited electrons to the nuclei and the instantaneous effect of change in electron distribution on the interatomic p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2009-02, Vol.323 (5917), p.1033-1037
Hauptverfasser: Ernstorfer, Ralph, Harb, Maher, Hebeisen, Christoph T, Sciaini, Germán, Dartigalongue, Thibault, Miller, R.J. Dwayne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1037
container_issue 5917
container_start_page 1033
container_title Science (American Association for the Advancement of Science)
container_volume 323
creator Ernstorfer, Ralph
Harb, Maher
Hebeisen, Christoph T
Sciaini, Germán
Dartigalongue, Thibault
Miller, R.J. Dwayne
description Under strong optical excitation conditions, it is possible to create highly nonequilibrium states of matter. The nuclear response is determined by the rate of energy transfer from the excited electrons to the nuclei and the instantaneous effect of change in electron distribution on the interatomic potential energy landscape. We used femtosecond electron diffraction to follow the structural evolution of strongly excited gold under these transient electronic conditions. Generally, materials become softer with excitation. In contrast, the rate of disordering of the gold lattice is found to be retarded at excitation levels up to 2.85 megajoules per kilogram with respect to the degree of lattice heating, which is indicative of increased lattice stability at high effective electronic temperatures, a predicted effect that illustrates the strong correlation between electronic structure and lattice bonding.
doi_str_mv 10.1126/science.1162697
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_743503389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20403118</jstor_id><sourcerecordid>20403118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c568t-305f0146409b718bea54cbad5ce0d71559154e99629970504469a561c0a30d6a3</originalsourceid><addsrcrecordid>eNp90r1v1DAYBnALUdGjMDMBFlLLFPq-8UdiNmivLVIRA1QMDJbPcSqfEvtq5yr47_HpolZiYIqs5-fXsp8Q8grhA2ItT7P1LlhXFrKWqnlCFghKVKoG9pQsAJisWmjEIXme8xqgZIo9I4eoUPIG2gX5dRHTaCYfA409_WnSSM9dyI5-NdPk0ke6_L1xyY8uTGagy3vf7c6jfUx0OTg7pRi8pZ9j6OiVSSX04Zb6QC_j0L0gB70Zsns5f4_IzcXyx9lVdf3t8svZp-vKCtlOFQPRA3LJQa0abFfOCG5XphPWQdegEAoFd0rJWqkGBHAulRESLRgGnTTsiLzfz92keLd1edKjz9YNgwkubrNuOBPAWKuKPPmvlFJxKbks8N0_cB23KZRb6BqZhLqFtqDTPbIp5pxcrzflpUz6oxH0rh4916PnesqON_PY7Wp03aOf-yjgeAYmWzP0yQTr84OrEVvkihX3eu_WeYrpMQcOrJiSv93nvYna3KYy4-Z7DcgAxe4fYOwv_QepZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213602808</pqid></control><display><type>article</type><title>Formation of Warm Dense Matter: Experimental Evidence for Electronic Bond Hardening in Gold</title><source>Jstor Complete Legacy</source><source>Science Magazine</source><creator>Ernstorfer, Ralph ; Harb, Maher ; Hebeisen, Christoph T ; Sciaini, Germán ; Dartigalongue, Thibault ; Miller, R.J. Dwayne</creator><creatorcontrib>Ernstorfer, Ralph ; Harb, Maher ; Hebeisen, Christoph T ; Sciaini, Germán ; Dartigalongue, Thibault ; Miller, R.J. Dwayne</creatorcontrib><description>Under strong optical excitation conditions, it is possible to create highly nonequilibrium states of matter. The nuclear response is determined by the rate of energy transfer from the excited electrons to the nuclei and the instantaneous effect of change in electron distribution on the interatomic potential energy landscape. We used femtosecond electron diffraction to follow the structural evolution of strongly excited gold under these transient electronic conditions. Generally, materials become softer with excitation. In contrast, the rate of disordering of the gold lattice is found to be retarded at excitation levels up to 2.85 megajoules per kilogram with respect to the degree of lattice heating, which is indicative of increased lattice stability at high effective electronic temperatures, a predicted effect that illustrates the strong correlation between electronic structure and lattice bonding.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1162697</identifier><identifier>PMID: 19164708</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Association for the Advancement of Science</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Crystal lattices ; Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems ; Electronic structure ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Electrons ; Exact sciences and technology ; Gold ; Lasers ; Liquids ; Materials science ; Melting ; Optics ; Phonons ; Physics ; Plasma stability ; Pumps ; Structure and morphology; thickness ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Thin film structure and morphology ; Thin films and multilayers ; Wave diffraction</subject><ispartof>Science (American Association for the Advancement of Science), 2009-02, Vol.323 (5917), p.1033-1037</ispartof><rights>Copyright 2009 American Association for the Advancement of Science</rights><rights>2009 INIST-CNRS</rights><rights>Copyright © 2009, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c568t-305f0146409b718bea54cbad5ce0d71559154e99629970504469a561c0a30d6a3</citedby><cites>FETCH-LOGICAL-c568t-305f0146409b718bea54cbad5ce0d71559154e99629970504469a561c0a30d6a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20403118$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20403118$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,2871,2872,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21181493$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19164708$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ernstorfer, Ralph</creatorcontrib><creatorcontrib>Harb, Maher</creatorcontrib><creatorcontrib>Hebeisen, Christoph T</creatorcontrib><creatorcontrib>Sciaini, Germán</creatorcontrib><creatorcontrib>Dartigalongue, Thibault</creatorcontrib><creatorcontrib>Miller, R.J. Dwayne</creatorcontrib><title>Formation of Warm Dense Matter: Experimental Evidence for Electronic Bond Hardening in Gold</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Under strong optical excitation conditions, it is possible to create highly nonequilibrium states of matter. The nuclear response is determined by the rate of energy transfer from the excited electrons to the nuclei and the instantaneous effect of change in electron distribution on the interatomic potential energy landscape. We used femtosecond electron diffraction to follow the structural evolution of strongly excited gold under these transient electronic conditions. Generally, materials become softer with excitation. In contrast, the rate of disordering of the gold lattice is found to be retarded at excitation levels up to 2.85 megajoules per kilogram with respect to the degree of lattice heating, which is indicative of increased lattice stability at high effective electronic temperatures, a predicted effect that illustrates the strong correlation between electronic structure and lattice bonding.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Crystal lattices</subject><subject>Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems</subject><subject>Electronic structure</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Electrons</subject><subject>Exact sciences and technology</subject><subject>Gold</subject><subject>Lasers</subject><subject>Liquids</subject><subject>Materials science</subject><subject>Melting</subject><subject>Optics</subject><subject>Phonons</subject><subject>Physics</subject><subject>Plasma stability</subject><subject>Pumps</subject><subject>Structure and morphology; thickness</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Thin film structure and morphology</subject><subject>Thin films and multilayers</subject><subject>Wave diffraction</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp90r1v1DAYBnALUdGjMDMBFlLLFPq-8UdiNmivLVIRA1QMDJbPcSqfEvtq5yr47_HpolZiYIqs5-fXsp8Q8grhA2ItT7P1LlhXFrKWqnlCFghKVKoG9pQsAJisWmjEIXme8xqgZIo9I4eoUPIG2gX5dRHTaCYfA409_WnSSM9dyI5-NdPk0ke6_L1xyY8uTGagy3vf7c6jfUx0OTg7pRi8pZ9j6OiVSSX04Zb6QC_j0L0gB70Zsns5f4_IzcXyx9lVdf3t8svZp-vKCtlOFQPRA3LJQa0abFfOCG5XphPWQdegEAoFd0rJWqkGBHAulRESLRgGnTTsiLzfz92keLd1edKjz9YNgwkubrNuOBPAWKuKPPmvlFJxKbks8N0_cB23KZRb6BqZhLqFtqDTPbIp5pxcrzflpUz6oxH0rh4916PnesqON_PY7Wp03aOf-yjgeAYmWzP0yQTr84OrEVvkihX3eu_WeYrpMQcOrJiSv93nvYna3KYy4-Z7DcgAxe4fYOwv_QepZA</recordid><startdate>20090220</startdate><enddate>20090220</enddate><creator>Ernstorfer, Ralph</creator><creator>Harb, Maher</creator><creator>Hebeisen, Christoph T</creator><creator>Sciaini, Germán</creator><creator>Dartigalongue, Thibault</creator><creator>Miller, R.J. Dwayne</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>FBQ</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20090220</creationdate><title>Formation of Warm Dense Matter: Experimental Evidence for Electronic Bond Hardening in Gold</title><author>Ernstorfer, Ralph ; Harb, Maher ; Hebeisen, Christoph T ; Sciaini, Germán ; Dartigalongue, Thibault ; Miller, R.J. Dwayne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c568t-305f0146409b718bea54cbad5ce0d71559154e99629970504469a561c0a30d6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Crystal lattices</topic><topic>Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems</topic><topic>Electronic structure</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Electrons</topic><topic>Exact sciences and technology</topic><topic>Gold</topic><topic>Lasers</topic><topic>Liquids</topic><topic>Materials science</topic><topic>Melting</topic><topic>Optics</topic><topic>Phonons</topic><topic>Physics</topic><topic>Plasma stability</topic><topic>Pumps</topic><topic>Structure and morphology; thickness</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Thin film structure and morphology</topic><topic>Thin films and multilayers</topic><topic>Wave diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ernstorfer, Ralph</creatorcontrib><creatorcontrib>Harb, Maher</creatorcontrib><creatorcontrib>Hebeisen, Christoph T</creatorcontrib><creatorcontrib>Sciaini, Germán</creatorcontrib><creatorcontrib>Dartigalongue, Thibault</creatorcontrib><creatorcontrib>Miller, R.J. Dwayne</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ernstorfer, Ralph</au><au>Harb, Maher</au><au>Hebeisen, Christoph T</au><au>Sciaini, Germán</au><au>Dartigalongue, Thibault</au><au>Miller, R.J. Dwayne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formation of Warm Dense Matter: Experimental Evidence for Electronic Bond Hardening in Gold</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2009-02-20</date><risdate>2009</risdate><volume>323</volume><issue>5917</issue><spage>1033</spage><epage>1037</epage><pages>1033-1037</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Under strong optical excitation conditions, it is possible to create highly nonequilibrium states of matter. The nuclear response is determined by the rate of energy transfer from the excited electrons to the nuclei and the instantaneous effect of change in electron distribution on the interatomic potential energy landscape. We used femtosecond electron diffraction to follow the structural evolution of strongly excited gold under these transient electronic conditions. Generally, materials become softer with excitation. In contrast, the rate of disordering of the gold lattice is found to be retarded at excitation levels up to 2.85 megajoules per kilogram with respect to the degree of lattice heating, which is indicative of increased lattice stability at high effective electronic temperatures, a predicted effect that illustrates the strong correlation between electronic structure and lattice bonding.</abstract><cop>Washington, DC</cop><pub>American Association for the Advancement of Science</pub><pmid>19164708</pmid><doi>10.1126/science.1162697</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2009-02, Vol.323 (5917), p.1033-1037
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_743503389
source Jstor Complete Legacy; Science Magazine
subjects Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Crystal lattices
Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems
Electronic structure
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
Electrons
Exact sciences and technology
Gold
Lasers
Liquids
Materials science
Melting
Optics
Phonons
Physics
Plasma stability
Pumps
Structure and morphology
thickness
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
Thin film structure and morphology
Thin films and multilayers
Wave diffraction
title Formation of Warm Dense Matter: Experimental Evidence for Electronic Bond Hardening in Gold
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T05%3A14%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formation%20of%20Warm%20Dense%20Matter:%20Experimental%20Evidence%20for%20Electronic%20Bond%20Hardening%20in%20Gold&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Ernstorfer,%20Ralph&rft.date=2009-02-20&rft.volume=323&rft.issue=5917&rft.spage=1033&rft.epage=1037&rft.pages=1033-1037&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1162697&rft_dat=%3Cjstor_proqu%3E20403118%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213602808&rft_id=info:pmid/19164708&rft_jstor_id=20403118&rfr_iscdi=true