Formation of Warm Dense Matter: Experimental Evidence for Electronic Bond Hardening in Gold
Under strong optical excitation conditions, it is possible to create highly nonequilibrium states of matter. The nuclear response is determined by the rate of energy transfer from the excited electrons to the nuclei and the instantaneous effect of change in electron distribution on the interatomic p...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2009-02, Vol.323 (5917), p.1033-1037 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1037 |
---|---|
container_issue | 5917 |
container_start_page | 1033 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 323 |
creator | Ernstorfer, Ralph Harb, Maher Hebeisen, Christoph T Sciaini, Germán Dartigalongue, Thibault Miller, R.J. Dwayne |
description | Under strong optical excitation conditions, it is possible to create highly nonequilibrium states of matter. The nuclear response is determined by the rate of energy transfer from the excited electrons to the nuclei and the instantaneous effect of change in electron distribution on the interatomic potential energy landscape. We used femtosecond electron diffraction to follow the structural evolution of strongly excited gold under these transient electronic conditions. Generally, materials become softer with excitation. In contrast, the rate of disordering of the gold lattice is found to be retarded at excitation levels up to 2.85 megajoules per kilogram with respect to the degree of lattice heating, which is indicative of increased lattice stability at high effective electronic temperatures, a predicted effect that illustrates the strong correlation between electronic structure and lattice bonding. |
doi_str_mv | 10.1126/science.1162697 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_743503389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20403118</jstor_id><sourcerecordid>20403118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c568t-305f0146409b718bea54cbad5ce0d71559154e99629970504469a561c0a30d6a3</originalsourceid><addsrcrecordid>eNp90r1v1DAYBnALUdGjMDMBFlLLFPq-8UdiNmivLVIRA1QMDJbPcSqfEvtq5yr47_HpolZiYIqs5-fXsp8Q8grhA2ItT7P1LlhXFrKWqnlCFghKVKoG9pQsAJisWmjEIXme8xqgZIo9I4eoUPIG2gX5dRHTaCYfA409_WnSSM9dyI5-NdPk0ke6_L1xyY8uTGagy3vf7c6jfUx0OTg7pRi8pZ9j6OiVSSX04Zb6QC_j0L0gB70Zsns5f4_IzcXyx9lVdf3t8svZp-vKCtlOFQPRA3LJQa0abFfOCG5XphPWQdegEAoFd0rJWqkGBHAulRESLRgGnTTsiLzfz92keLd1edKjz9YNgwkubrNuOBPAWKuKPPmvlFJxKbks8N0_cB23KZRb6BqZhLqFtqDTPbIp5pxcrzflpUz6oxH0rh4916PnesqON_PY7Wp03aOf-yjgeAYmWzP0yQTr84OrEVvkihX3eu_WeYrpMQcOrJiSv93nvYna3KYy4-Z7DcgAxe4fYOwv_QepZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213602808</pqid></control><display><type>article</type><title>Formation of Warm Dense Matter: Experimental Evidence for Electronic Bond Hardening in Gold</title><source>Jstor Complete Legacy</source><source>Science Magazine</source><creator>Ernstorfer, Ralph ; Harb, Maher ; Hebeisen, Christoph T ; Sciaini, Germán ; Dartigalongue, Thibault ; Miller, R.J. Dwayne</creator><creatorcontrib>Ernstorfer, Ralph ; Harb, Maher ; Hebeisen, Christoph T ; Sciaini, Germán ; Dartigalongue, Thibault ; Miller, R.J. Dwayne</creatorcontrib><description>Under strong optical excitation conditions, it is possible to create highly nonequilibrium states of matter. The nuclear response is determined by the rate of energy transfer from the excited electrons to the nuclei and the instantaneous effect of change in electron distribution on the interatomic potential energy landscape. We used femtosecond electron diffraction to follow the structural evolution of strongly excited gold under these transient electronic conditions. Generally, materials become softer with excitation. In contrast, the rate of disordering of the gold lattice is found to be retarded at excitation levels up to 2.85 megajoules per kilogram with respect to the degree of lattice heating, which is indicative of increased lattice stability at high effective electronic temperatures, a predicted effect that illustrates the strong correlation between electronic structure and lattice bonding.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1162697</identifier><identifier>PMID: 19164708</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Association for the Advancement of Science</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Crystal lattices ; Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems ; Electronic structure ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Electrons ; Exact sciences and technology ; Gold ; Lasers ; Liquids ; Materials science ; Melting ; Optics ; Phonons ; Physics ; Plasma stability ; Pumps ; Structure and morphology; thickness ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Thin film structure and morphology ; Thin films and multilayers ; Wave diffraction</subject><ispartof>Science (American Association for the Advancement of Science), 2009-02, Vol.323 (5917), p.1033-1037</ispartof><rights>Copyright 2009 American Association for the Advancement of Science</rights><rights>2009 INIST-CNRS</rights><rights>Copyright © 2009, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c568t-305f0146409b718bea54cbad5ce0d71559154e99629970504469a561c0a30d6a3</citedby><cites>FETCH-LOGICAL-c568t-305f0146409b718bea54cbad5ce0d71559154e99629970504469a561c0a30d6a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20403118$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20403118$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,2871,2872,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21181493$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19164708$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ernstorfer, Ralph</creatorcontrib><creatorcontrib>Harb, Maher</creatorcontrib><creatorcontrib>Hebeisen, Christoph T</creatorcontrib><creatorcontrib>Sciaini, Germán</creatorcontrib><creatorcontrib>Dartigalongue, Thibault</creatorcontrib><creatorcontrib>Miller, R.J. Dwayne</creatorcontrib><title>Formation of Warm Dense Matter: Experimental Evidence for Electronic Bond Hardening in Gold</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Under strong optical excitation conditions, it is possible to create highly nonequilibrium states of matter. The nuclear response is determined by the rate of energy transfer from the excited electrons to the nuclei and the instantaneous effect of change in electron distribution on the interatomic potential energy landscape. We used femtosecond electron diffraction to follow the structural evolution of strongly excited gold under these transient electronic conditions. Generally, materials become softer with excitation. In contrast, the rate of disordering of the gold lattice is found to be retarded at excitation levels up to 2.85 megajoules per kilogram with respect to the degree of lattice heating, which is indicative of increased lattice stability at high effective electronic temperatures, a predicted effect that illustrates the strong correlation between electronic structure and lattice bonding.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Crystal lattices</subject><subject>Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems</subject><subject>Electronic structure</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Electrons</subject><subject>Exact sciences and technology</subject><subject>Gold</subject><subject>Lasers</subject><subject>Liquids</subject><subject>Materials science</subject><subject>Melting</subject><subject>Optics</subject><subject>Phonons</subject><subject>Physics</subject><subject>Plasma stability</subject><subject>Pumps</subject><subject>Structure and morphology; thickness</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Thin film structure and morphology</subject><subject>Thin films and multilayers</subject><subject>Wave diffraction</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp90r1v1DAYBnALUdGjMDMBFlLLFPq-8UdiNmivLVIRA1QMDJbPcSqfEvtq5yr47_HpolZiYIqs5-fXsp8Q8grhA2ItT7P1LlhXFrKWqnlCFghKVKoG9pQsAJisWmjEIXme8xqgZIo9I4eoUPIG2gX5dRHTaCYfA409_WnSSM9dyI5-NdPk0ke6_L1xyY8uTGagy3vf7c6jfUx0OTg7pRi8pZ9j6OiVSSX04Zb6QC_j0L0gB70Zsns5f4_IzcXyx9lVdf3t8svZp-vKCtlOFQPRA3LJQa0abFfOCG5XphPWQdegEAoFd0rJWqkGBHAulRESLRgGnTTsiLzfz92keLd1edKjz9YNgwkubrNuOBPAWKuKPPmvlFJxKbks8N0_cB23KZRb6BqZhLqFtqDTPbIp5pxcrzflpUz6oxH0rh4916PnesqON_PY7Wp03aOf-yjgeAYmWzP0yQTr84OrEVvkihX3eu_WeYrpMQcOrJiSv93nvYna3KYy4-Z7DcgAxe4fYOwv_QepZA</recordid><startdate>20090220</startdate><enddate>20090220</enddate><creator>Ernstorfer, Ralph</creator><creator>Harb, Maher</creator><creator>Hebeisen, Christoph T</creator><creator>Sciaini, Germán</creator><creator>Dartigalongue, Thibault</creator><creator>Miller, R.J. Dwayne</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>FBQ</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20090220</creationdate><title>Formation of Warm Dense Matter: Experimental Evidence for Electronic Bond Hardening in Gold</title><author>Ernstorfer, Ralph ; Harb, Maher ; Hebeisen, Christoph T ; Sciaini, Germán ; Dartigalongue, Thibault ; Miller, R.J. Dwayne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c568t-305f0146409b718bea54cbad5ce0d71559154e99629970504469a561c0a30d6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Crystal lattices</topic><topic>Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems</topic><topic>Electronic structure</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Electrons</topic><topic>Exact sciences and technology</topic><topic>Gold</topic><topic>Lasers</topic><topic>Liquids</topic><topic>Materials science</topic><topic>Melting</topic><topic>Optics</topic><topic>Phonons</topic><topic>Physics</topic><topic>Plasma stability</topic><topic>Pumps</topic><topic>Structure and morphology; thickness</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Thin film structure and morphology</topic><topic>Thin films and multilayers</topic><topic>Wave diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ernstorfer, Ralph</creatorcontrib><creatorcontrib>Harb, Maher</creatorcontrib><creatorcontrib>Hebeisen, Christoph T</creatorcontrib><creatorcontrib>Sciaini, Germán</creatorcontrib><creatorcontrib>Dartigalongue, Thibault</creatorcontrib><creatorcontrib>Miller, R.J. Dwayne</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ernstorfer, Ralph</au><au>Harb, Maher</au><au>Hebeisen, Christoph T</au><au>Sciaini, Germán</au><au>Dartigalongue, Thibault</au><au>Miller, R.J. Dwayne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formation of Warm Dense Matter: Experimental Evidence for Electronic Bond Hardening in Gold</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2009-02-20</date><risdate>2009</risdate><volume>323</volume><issue>5917</issue><spage>1033</spage><epage>1037</epage><pages>1033-1037</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Under strong optical excitation conditions, it is possible to create highly nonequilibrium states of matter. The nuclear response is determined by the rate of energy transfer from the excited electrons to the nuclei and the instantaneous effect of change in electron distribution on the interatomic potential energy landscape. We used femtosecond electron diffraction to follow the structural evolution of strongly excited gold under these transient electronic conditions. Generally, materials become softer with excitation. In contrast, the rate of disordering of the gold lattice is found to be retarded at excitation levels up to 2.85 megajoules per kilogram with respect to the degree of lattice heating, which is indicative of increased lattice stability at high effective electronic temperatures, a predicted effect that illustrates the strong correlation between electronic structure and lattice bonding.</abstract><cop>Washington, DC</cop><pub>American Association for the Advancement of Science</pub><pmid>19164708</pmid><doi>10.1126/science.1162697</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2009-02, Vol.323 (5917), p.1033-1037 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_743503389 |
source | Jstor Complete Legacy; Science Magazine |
subjects | Condensed matter: electronic structure, electrical, magnetic, and optical properties Condensed matter: structure, mechanical and thermal properties Crystal lattices Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems Electronic structure Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures Electrons Exact sciences and technology Gold Lasers Liquids Materials science Melting Optics Phonons Physics Plasma stability Pumps Structure and morphology thickness Surfaces and interfaces thin films and whiskers (structure and nonelectronic properties) Thin film structure and morphology Thin films and multilayers Wave diffraction |
title | Formation of Warm Dense Matter: Experimental Evidence for Electronic Bond Hardening in Gold |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T05%3A14%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formation%20of%20Warm%20Dense%20Matter:%20Experimental%20Evidence%20for%20Electronic%20Bond%20Hardening%20in%20Gold&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Ernstorfer,%20Ralph&rft.date=2009-02-20&rft.volume=323&rft.issue=5917&rft.spage=1033&rft.epage=1037&rft.pages=1033-1037&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1162697&rft_dat=%3Cjstor_proqu%3E20403118%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213602808&rft_id=info:pmid/19164708&rft_jstor_id=20403118&rfr_iscdi=true |