The 100,000-Year Ice-Age Cycle Identified and Found to Lag Temperature, Carbon Dioxide, and Orbital Eccentricity
The deep-sea sediment oxygen isotopic composition (δ18O) record is dominated by a 100,000-year cyclicity that is universally interpreted as the main ice-age rhythm. Here, the ice volume component of this δ18O signal was extracted by using the record of δ18O in atmospheric oxygen trapped in Antarctic...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2000-09, Vol.289 (5486), p.1897-1902 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1902 |
---|---|
container_issue | 5486 |
container_start_page | 1897 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 289 |
creator | Shackleton, Nicholas J. |
description | The deep-sea sediment oxygen isotopic composition (δ18O) record is dominated by a 100,000-year cyclicity that is universally interpreted as the main ice-age rhythm. Here, the ice volume component of this δ18O signal was extracted by using the record of δ18O in atmospheric oxygen trapped in Antarctic ice at Vostok, precisely orbitally tuned. The benthic marine δ18O record is heavily contaminated by the effect of deep-water temperature variability, but by using the Vostok record, the δ18O signals of ice volume, deep-water temperature, and additional processes affecting air δ18O (that is, a varying Dole effect) were separated. At the 100,000-year period, atmospheric carbon dioxide, Vostok air temperature, and deep-water temperature are in phase with orbital eccentricity, whereas ice volume lags these three variables. Hence, the 100,000-year cycle does not arise from ice sheet dynamics; instead, it is probably the response of the global carbon cycle that generates the eccentricity signal by causing changes in atmospheric carbon dioxide concentration. |
doi_str_mv | 10.1126/science.289.5486.1897 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_743497722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A65730712</galeid><jstor_id>3077678</jstor_id><sourcerecordid>A65730712</sourcerecordid><originalsourceid>FETCH-LOGICAL-a904t-c87d42299dd2a3ba5b334f765dd90bd09617cd82b7b09c9cac0f9f15bfde5f633</originalsourceid><addsrcrecordid>eNqN0_-L0zAUAPAiinee_gcq5RC9H9aZL02T_Djn3RwM94NT8KeSJq81o2tn0sLtvzdlQ52McxRa2vfJa3gvL4peYTTGmGTvvbbQaBgTIccsFdkYC8kfRZcYSZZIgujj6BIhmiUCcXYRPfN-jVCISfo0ughICJTRy2i7-gExRmgUgsl3UC6ea0gmFcTTna4hnhtoOltaMLFqTHzX9uHetfFCVfEKNltwqusdjOKpckXbxB9te29NeB_00hW2U3V8q3XI4qy23e559KRUtYcXh-dV9PXudjX9lCyWs_l0skiURGmXaMFNSoiUxhBFC8UKStOSZ8wYiQqDZIa5NoIUvEBSS600KmWJWVEaYGVG6VX0bp9369qfPfgu31ivoa5VA23vc57SVHJOSJBvH5QEM4RIhs6AqUBUigBvHoRYhDbQlAr535yYZ5hJfgZMGefh9wFe_wPXbe-aUOuwQcqyULk0oNEeVaqG3DZl2zmlK2hCP-u2gdKGz5OMcYo4HkqUnODhMrCx-pS_OfKBdHDfVar3Pp9_-Xw2XX47m36YnUvFbHFER6eobusaKsjDoZwujzjbc-1a7x2U-dbZjXK7HKN8mMz8MJl5mMx8mMx8mMyw7vWhLX2xAfPXqv0oBvDmAJTXqi6darT1fxwjhNHhHLzcs7XvWvc7HDbHMy7oLzc7QzE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213569614</pqid></control><display><type>article</type><title>The 100,000-Year Ice-Age Cycle Identified and Found to Lag Temperature, Carbon Dioxide, and Orbital Eccentricity</title><source>JSTOR Archive Collection A-Z Listing</source><source>American Association for the Advancement of Science</source><creator>Shackleton, Nicholas J.</creator><creatorcontrib>Shackleton, Nicholas J.</creatorcontrib><description>The deep-sea sediment oxygen isotopic composition (δ18O) record is dominated by a 100,000-year cyclicity that is universally interpreted as the main ice-age rhythm. Here, the ice volume component of this δ18O signal was extracted by using the record of δ18O in atmospheric oxygen trapped in Antarctic ice at Vostok, precisely orbitally tuned. The benthic marine δ18O record is heavily contaminated by the effect of deep-water temperature variability, but by using the Vostok record, the δ18O signals of ice volume, deep-water temperature, and additional processes affecting air δ18O (that is, a varying Dole effect) were separated. At the 100,000-year period, atmospheric carbon dioxide, Vostok air temperature, and deep-water temperature are in phase with orbital eccentricity, whereas ice volume lags these three variables. Hence, the 100,000-year cycle does not arise from ice sheet dynamics; instead, it is probably the response of the global carbon cycle that generates the eccentricity signal by causing changes in atmospheric carbon dioxide concentration.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.289.5486.1897</identifier><identifier>PMID: 10988063</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Society for the Advancement of Science</publisher><subject>Atmospherics ; Axial tilt ; Carbon dioxide ; Climate ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Geology ; Glaciology ; Ice ; Ice sheets ; Marine ; Marine and continental quaternary ; Mathematical Models ; Measurement ; Microbial rhodopsins ; Natural cycles ; Numerical eccentricity ; Ocean temperature ; Orbital eccentricity ; Oxygen ; Periodicity ; Precession ; Prehistoric era ; Reaction Time ; Sea level ; Surficial geology ; Temperature ; Water</subject><ispartof>Science (American Association for the Advancement of Science), 2000-09, Vol.289 (5486), p.1897-1902</ispartof><rights>Copyright 2000 American Association for the Advancement of Science</rights><rights>2000 INIST-CNRS</rights><rights>COPYRIGHT 2000 American Association for the Advancement of Science</rights><rights>COPYRIGHT 2000 American Association for the Advancement of Science</rights><rights>Copyright American Association for the Advancement of Science Sep 15, 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a904t-c87d42299dd2a3ba5b334f765dd90bd09617cd82b7b09c9cac0f9f15bfde5f633</citedby><cites>FETCH-LOGICAL-a904t-c87d42299dd2a3ba5b334f765dd90bd09617cd82b7b09c9cac0f9f15bfde5f633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3077678$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3077678$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,782,786,805,2886,2887,27931,27932,58024,58257</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1522539$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10988063$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shackleton, Nicholas J.</creatorcontrib><title>The 100,000-Year Ice-Age Cycle Identified and Found to Lag Temperature, Carbon Dioxide, and Orbital Eccentricity</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>The deep-sea sediment oxygen isotopic composition (δ18O) record is dominated by a 100,000-year cyclicity that is universally interpreted as the main ice-age rhythm. Here, the ice volume component of this δ18O signal was extracted by using the record of δ18O in atmospheric oxygen trapped in Antarctic ice at Vostok, precisely orbitally tuned. The benthic marine δ18O record is heavily contaminated by the effect of deep-water temperature variability, but by using the Vostok record, the δ18O signals of ice volume, deep-water temperature, and additional processes affecting air δ18O (that is, a varying Dole effect) were separated. At the 100,000-year period, atmospheric carbon dioxide, Vostok air temperature, and deep-water temperature are in phase with orbital eccentricity, whereas ice volume lags these three variables. Hence, the 100,000-year cycle does not arise from ice sheet dynamics; instead, it is probably the response of the global carbon cycle that generates the eccentricity signal by causing changes in atmospheric carbon dioxide concentration.</description><subject>Atmospherics</subject><subject>Axial tilt</subject><subject>Carbon dioxide</subject><subject>Climate</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Geology</subject><subject>Glaciology</subject><subject>Ice</subject><subject>Ice sheets</subject><subject>Marine</subject><subject>Marine and continental quaternary</subject><subject>Mathematical Models</subject><subject>Measurement</subject><subject>Microbial rhodopsins</subject><subject>Natural cycles</subject><subject>Numerical eccentricity</subject><subject>Ocean temperature</subject><subject>Orbital eccentricity</subject><subject>Oxygen</subject><subject>Periodicity</subject><subject>Precession</subject><subject>Prehistoric era</subject><subject>Reaction Time</subject><subject>Sea level</subject><subject>Surficial geology</subject><subject>Temperature</subject><subject>Water</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqN0_-L0zAUAPAiinee_gcq5RC9H9aZL02T_Djn3RwM94NT8KeSJq81o2tn0sLtvzdlQ52McxRa2vfJa3gvL4peYTTGmGTvvbbQaBgTIccsFdkYC8kfRZcYSZZIgujj6BIhmiUCcXYRPfN-jVCISfo0ughICJTRy2i7-gExRmgUgsl3UC6ea0gmFcTTna4hnhtoOltaMLFqTHzX9uHetfFCVfEKNltwqusdjOKpckXbxB9te29NeB_00hW2U3V8q3XI4qy23e559KRUtYcXh-dV9PXudjX9lCyWs_l0skiURGmXaMFNSoiUxhBFC8UKStOSZ8wYiQqDZIa5NoIUvEBSS600KmWJWVEaYGVG6VX0bp9369qfPfgu31ivoa5VA23vc57SVHJOSJBvH5QEM4RIhs6AqUBUigBvHoRYhDbQlAr535yYZ5hJfgZMGefh9wFe_wPXbe-aUOuwQcqyULk0oNEeVaqG3DZl2zmlK2hCP-u2gdKGz5OMcYo4HkqUnODhMrCx-pS_OfKBdHDfVar3Pp9_-Xw2XX47m36YnUvFbHFER6eobusaKsjDoZwujzjbc-1a7x2U-dbZjXK7HKN8mMz8MJl5mMx8mMx8mMyw7vWhLX2xAfPXqv0oBvDmAJTXqi6darT1fxwjhNHhHLzcs7XvWvc7HDbHMy7oLzc7QzE</recordid><startdate>20000915</startdate><enddate>20000915</enddate><creator>Shackleton, Nicholas J.</creator><general>American Society for the Advancement of Science</general><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8GL</scope><scope>IBG</scope><scope>IOV</scope><scope>ISN</scope><scope>0-V</scope><scope>3V.</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88B</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9-</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0K</scope><scope>M0P</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>7ST</scope><scope>SOI</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7X8</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20000915</creationdate><title>The 100,000-Year Ice-Age Cycle Identified and Found to Lag Temperature, Carbon Dioxide, and Orbital Eccentricity</title><author>Shackleton, Nicholas J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a904t-c87d42299dd2a3ba5b334f765dd90bd09617cd82b7b09c9cac0f9f15bfde5f633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Atmospherics</topic><topic>Axial tilt</topic><topic>Carbon dioxide</topic><topic>Climate</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Geology</topic><topic>Glaciology</topic><topic>Ice</topic><topic>Ice sheets</topic><topic>Marine</topic><topic>Marine and continental quaternary</topic><topic>Mathematical Models</topic><topic>Measurement</topic><topic>Microbial rhodopsins</topic><topic>Natural cycles</topic><topic>Numerical eccentricity</topic><topic>Ocean temperature</topic><topic>Orbital eccentricity</topic><topic>Oxygen</topic><topic>Periodicity</topic><topic>Precession</topic><topic>Prehistoric era</topic><topic>Reaction Time</topic><topic>Sea level</topic><topic>Surficial geology</topic><topic>Temperature</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shackleton, Nicholas J.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: High School</collection><collection>Gale In Context: Biography</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Education Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Agricultural Science Database</collection><collection>Education Database</collection><collection>Consumer Health Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shackleton, Nicholas J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The 100,000-Year Ice-Age Cycle Identified and Found to Lag Temperature, Carbon Dioxide, and Orbital Eccentricity</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2000-09-15</date><risdate>2000</risdate><volume>289</volume><issue>5486</issue><spage>1897</spage><epage>1902</epage><pages>1897-1902</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>The deep-sea sediment oxygen isotopic composition (δ18O) record is dominated by a 100,000-year cyclicity that is universally interpreted as the main ice-age rhythm. Here, the ice volume component of this δ18O signal was extracted by using the record of δ18O in atmospheric oxygen trapped in Antarctic ice at Vostok, precisely orbitally tuned. The benthic marine δ18O record is heavily contaminated by the effect of deep-water temperature variability, but by using the Vostok record, the δ18O signals of ice volume, deep-water temperature, and additional processes affecting air δ18O (that is, a varying Dole effect) were separated. At the 100,000-year period, atmospheric carbon dioxide, Vostok air temperature, and deep-water temperature are in phase with orbital eccentricity, whereas ice volume lags these three variables. Hence, the 100,000-year cycle does not arise from ice sheet dynamics; instead, it is probably the response of the global carbon cycle that generates the eccentricity signal by causing changes in atmospheric carbon dioxide concentration.</abstract><cop>Washington, DC</cop><pub>American Society for the Advancement of Science</pub><pmid>10988063</pmid><doi>10.1126/science.289.5486.1897</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2000-09, Vol.289 (5486), p.1897-1902 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_743497722 |
source | JSTOR Archive Collection A-Z Listing; American Association for the Advancement of Science |
subjects | Atmospherics Axial tilt Carbon dioxide Climate Earth sciences Earth, ocean, space Exact sciences and technology Geology Glaciology Ice Ice sheets Marine Marine and continental quaternary Mathematical Models Measurement Microbial rhodopsins Natural cycles Numerical eccentricity Ocean temperature Orbital eccentricity Oxygen Periodicity Precession Prehistoric era Reaction Time Sea level Surficial geology Temperature Water |
title | The 100,000-Year Ice-Age Cycle Identified and Found to Lag Temperature, Carbon Dioxide, and Orbital Eccentricity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T17%3A10%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20100,000-Year%20Ice-Age%20Cycle%20Identified%20and%20Found%20to%20Lag%20Temperature,%20Carbon%20Dioxide,%20and%20Orbital%20Eccentricity&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Shackleton,%20Nicholas%20J.&rft.date=2000-09-15&rft.volume=289&rft.issue=5486&rft.spage=1897&rft.epage=1902&rft.pages=1897-1902&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.289.5486.1897&rft_dat=%3Cgale_proqu%3EA65730712%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213569614&rft_id=info:pmid/10988063&rft_galeid=A65730712&rft_jstor_id=3077678&rfr_iscdi=true |