The 100,000-Year Ice-Age Cycle Identified and Found to Lag Temperature, Carbon Dioxide, and Orbital Eccentricity

The deep-sea sediment oxygen isotopic composition (δ18O) record is dominated by a 100,000-year cyclicity that is universally interpreted as the main ice-age rhythm. Here, the ice volume component of this δ18O signal was extracted by using the record of δ18O in atmospheric oxygen trapped in Antarctic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2000-09, Vol.289 (5486), p.1897-1902
1. Verfasser: Shackleton, Nicholas J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1902
container_issue 5486
container_start_page 1897
container_title Science (American Association for the Advancement of Science)
container_volume 289
creator Shackleton, Nicholas J.
description The deep-sea sediment oxygen isotopic composition (δ18O) record is dominated by a 100,000-year cyclicity that is universally interpreted as the main ice-age rhythm. Here, the ice volume component of this δ18O signal was extracted by using the record of δ18O in atmospheric oxygen trapped in Antarctic ice at Vostok, precisely orbitally tuned. The benthic marine δ18O record is heavily contaminated by the effect of deep-water temperature variability, but by using the Vostok record, the δ18O signals of ice volume, deep-water temperature, and additional processes affecting air δ18O (that is, a varying Dole effect) were separated. At the 100,000-year period, atmospheric carbon dioxide, Vostok air temperature, and deep-water temperature are in phase with orbital eccentricity, whereas ice volume lags these three variables. Hence, the 100,000-year cycle does not arise from ice sheet dynamics; instead, it is probably the response of the global carbon cycle that generates the eccentricity signal by causing changes in atmospheric carbon dioxide concentration.
doi_str_mv 10.1126/science.289.5486.1897
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_743497722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A65730712</galeid><jstor_id>3077678</jstor_id><sourcerecordid>A65730712</sourcerecordid><originalsourceid>FETCH-LOGICAL-a904t-c87d42299dd2a3ba5b334f765dd90bd09617cd82b7b09c9cac0f9f15bfde5f633</originalsourceid><addsrcrecordid>eNqN0_-L0zAUAPAiinee_gcq5RC9H9aZL02T_Djn3RwM94NT8KeSJq81o2tn0sLtvzdlQ52McxRa2vfJa3gvL4peYTTGmGTvvbbQaBgTIccsFdkYC8kfRZcYSZZIgujj6BIhmiUCcXYRPfN-jVCISfo0ughICJTRy2i7-gExRmgUgsl3UC6ea0gmFcTTna4hnhtoOltaMLFqTHzX9uHetfFCVfEKNltwqusdjOKpckXbxB9te29NeB_00hW2U3V8q3XI4qy23e559KRUtYcXh-dV9PXudjX9lCyWs_l0skiURGmXaMFNSoiUxhBFC8UKStOSZ8wYiQqDZIa5NoIUvEBSS600KmWJWVEaYGVG6VX0bp9369qfPfgu31ivoa5VA23vc57SVHJOSJBvH5QEM4RIhs6AqUBUigBvHoRYhDbQlAr535yYZ5hJfgZMGefh9wFe_wPXbe-aUOuwQcqyULk0oNEeVaqG3DZl2zmlK2hCP-u2gdKGz5OMcYo4HkqUnODhMrCx-pS_OfKBdHDfVar3Pp9_-Xw2XX47m36YnUvFbHFER6eobusaKsjDoZwujzjbc-1a7x2U-dbZjXK7HKN8mMz8MJl5mMx8mMx8mMyw7vWhLX2xAfPXqv0oBvDmAJTXqi6darT1fxwjhNHhHLzcs7XvWvc7HDbHMy7oLzc7QzE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213569614</pqid></control><display><type>article</type><title>The 100,000-Year Ice-Age Cycle Identified and Found to Lag Temperature, Carbon Dioxide, and Orbital Eccentricity</title><source>JSTOR Archive Collection A-Z Listing</source><source>American Association for the Advancement of Science</source><creator>Shackleton, Nicholas J.</creator><creatorcontrib>Shackleton, Nicholas J.</creatorcontrib><description>The deep-sea sediment oxygen isotopic composition (δ18O) record is dominated by a 100,000-year cyclicity that is universally interpreted as the main ice-age rhythm. Here, the ice volume component of this δ18O signal was extracted by using the record of δ18O in atmospheric oxygen trapped in Antarctic ice at Vostok, precisely orbitally tuned. The benthic marine δ18O record is heavily contaminated by the effect of deep-water temperature variability, but by using the Vostok record, the δ18O signals of ice volume, deep-water temperature, and additional processes affecting air δ18O (that is, a varying Dole effect) were separated. At the 100,000-year period, atmospheric carbon dioxide, Vostok air temperature, and deep-water temperature are in phase with orbital eccentricity, whereas ice volume lags these three variables. Hence, the 100,000-year cycle does not arise from ice sheet dynamics; instead, it is probably the response of the global carbon cycle that generates the eccentricity signal by causing changes in atmospheric carbon dioxide concentration.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.289.5486.1897</identifier><identifier>PMID: 10988063</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Society for the Advancement of Science</publisher><subject>Atmospherics ; Axial tilt ; Carbon dioxide ; Climate ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Geology ; Glaciology ; Ice ; Ice sheets ; Marine ; Marine and continental quaternary ; Mathematical Models ; Measurement ; Microbial rhodopsins ; Natural cycles ; Numerical eccentricity ; Ocean temperature ; Orbital eccentricity ; Oxygen ; Periodicity ; Precession ; Prehistoric era ; Reaction Time ; Sea level ; Surficial geology ; Temperature ; Water</subject><ispartof>Science (American Association for the Advancement of Science), 2000-09, Vol.289 (5486), p.1897-1902</ispartof><rights>Copyright 2000 American Association for the Advancement of Science</rights><rights>2000 INIST-CNRS</rights><rights>COPYRIGHT 2000 American Association for the Advancement of Science</rights><rights>COPYRIGHT 2000 American Association for the Advancement of Science</rights><rights>Copyright American Association for the Advancement of Science Sep 15, 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a904t-c87d42299dd2a3ba5b334f765dd90bd09617cd82b7b09c9cac0f9f15bfde5f633</citedby><cites>FETCH-LOGICAL-a904t-c87d42299dd2a3ba5b334f765dd90bd09617cd82b7b09c9cac0f9f15bfde5f633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3077678$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3077678$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,782,786,805,2886,2887,27931,27932,58024,58257</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1522539$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10988063$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shackleton, Nicholas J.</creatorcontrib><title>The 100,000-Year Ice-Age Cycle Identified and Found to Lag Temperature, Carbon Dioxide, and Orbital Eccentricity</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>The deep-sea sediment oxygen isotopic composition (δ18O) record is dominated by a 100,000-year cyclicity that is universally interpreted as the main ice-age rhythm. Here, the ice volume component of this δ18O signal was extracted by using the record of δ18O in atmospheric oxygen trapped in Antarctic ice at Vostok, precisely orbitally tuned. The benthic marine δ18O record is heavily contaminated by the effect of deep-water temperature variability, but by using the Vostok record, the δ18O signals of ice volume, deep-water temperature, and additional processes affecting air δ18O (that is, a varying Dole effect) were separated. At the 100,000-year period, atmospheric carbon dioxide, Vostok air temperature, and deep-water temperature are in phase with orbital eccentricity, whereas ice volume lags these three variables. Hence, the 100,000-year cycle does not arise from ice sheet dynamics; instead, it is probably the response of the global carbon cycle that generates the eccentricity signal by causing changes in atmospheric carbon dioxide concentration.</description><subject>Atmospherics</subject><subject>Axial tilt</subject><subject>Carbon dioxide</subject><subject>Climate</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Geology</subject><subject>Glaciology</subject><subject>Ice</subject><subject>Ice sheets</subject><subject>Marine</subject><subject>Marine and continental quaternary</subject><subject>Mathematical Models</subject><subject>Measurement</subject><subject>Microbial rhodopsins</subject><subject>Natural cycles</subject><subject>Numerical eccentricity</subject><subject>Ocean temperature</subject><subject>Orbital eccentricity</subject><subject>Oxygen</subject><subject>Periodicity</subject><subject>Precession</subject><subject>Prehistoric era</subject><subject>Reaction Time</subject><subject>Sea level</subject><subject>Surficial geology</subject><subject>Temperature</subject><subject>Water</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqN0_-L0zAUAPAiinee_gcq5RC9H9aZL02T_Djn3RwM94NT8KeSJq81o2tn0sLtvzdlQ52McxRa2vfJa3gvL4peYTTGmGTvvbbQaBgTIccsFdkYC8kfRZcYSZZIgujj6BIhmiUCcXYRPfN-jVCISfo0ughICJTRy2i7-gExRmgUgsl3UC6ea0gmFcTTna4hnhtoOltaMLFqTHzX9uHetfFCVfEKNltwqusdjOKpckXbxB9te29NeB_00hW2U3V8q3XI4qy23e559KRUtYcXh-dV9PXudjX9lCyWs_l0skiURGmXaMFNSoiUxhBFC8UKStOSZ8wYiQqDZIa5NoIUvEBSS600KmWJWVEaYGVG6VX0bp9369qfPfgu31ivoa5VA23vc57SVHJOSJBvH5QEM4RIhs6AqUBUigBvHoRYhDbQlAr535yYZ5hJfgZMGefh9wFe_wPXbe-aUOuwQcqyULk0oNEeVaqG3DZl2zmlK2hCP-u2gdKGz5OMcYo4HkqUnODhMrCx-pS_OfKBdHDfVar3Pp9_-Xw2XX47m36YnUvFbHFER6eobusaKsjDoZwujzjbc-1a7x2U-dbZjXK7HKN8mMz8MJl5mMx8mMx8mMyw7vWhLX2xAfPXqv0oBvDmAJTXqi6darT1fxwjhNHhHLzcs7XvWvc7HDbHMy7oLzc7QzE</recordid><startdate>20000915</startdate><enddate>20000915</enddate><creator>Shackleton, Nicholas J.</creator><general>American Society for the Advancement of Science</general><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8GL</scope><scope>IBG</scope><scope>IOV</scope><scope>ISN</scope><scope>0-V</scope><scope>3V.</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88B</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9-</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0K</scope><scope>M0P</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>7ST</scope><scope>SOI</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7X8</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20000915</creationdate><title>The 100,000-Year Ice-Age Cycle Identified and Found to Lag Temperature, Carbon Dioxide, and Orbital Eccentricity</title><author>Shackleton, Nicholas J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a904t-c87d42299dd2a3ba5b334f765dd90bd09617cd82b7b09c9cac0f9f15bfde5f633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Atmospherics</topic><topic>Axial tilt</topic><topic>Carbon dioxide</topic><topic>Climate</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Geology</topic><topic>Glaciology</topic><topic>Ice</topic><topic>Ice sheets</topic><topic>Marine</topic><topic>Marine and continental quaternary</topic><topic>Mathematical Models</topic><topic>Measurement</topic><topic>Microbial rhodopsins</topic><topic>Natural cycles</topic><topic>Numerical eccentricity</topic><topic>Ocean temperature</topic><topic>Orbital eccentricity</topic><topic>Oxygen</topic><topic>Periodicity</topic><topic>Precession</topic><topic>Prehistoric era</topic><topic>Reaction Time</topic><topic>Sea level</topic><topic>Surficial geology</topic><topic>Temperature</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shackleton, Nicholas J.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: High School</collection><collection>Gale In Context: Biography</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Education Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Agricultural Science Database</collection><collection>Education Database</collection><collection>Consumer Health Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shackleton, Nicholas J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The 100,000-Year Ice-Age Cycle Identified and Found to Lag Temperature, Carbon Dioxide, and Orbital Eccentricity</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2000-09-15</date><risdate>2000</risdate><volume>289</volume><issue>5486</issue><spage>1897</spage><epage>1902</epage><pages>1897-1902</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>The deep-sea sediment oxygen isotopic composition (δ18O) record is dominated by a 100,000-year cyclicity that is universally interpreted as the main ice-age rhythm. Here, the ice volume component of this δ18O signal was extracted by using the record of δ18O in atmospheric oxygen trapped in Antarctic ice at Vostok, precisely orbitally tuned. The benthic marine δ18O record is heavily contaminated by the effect of deep-water temperature variability, but by using the Vostok record, the δ18O signals of ice volume, deep-water temperature, and additional processes affecting air δ18O (that is, a varying Dole effect) were separated. At the 100,000-year period, atmospheric carbon dioxide, Vostok air temperature, and deep-water temperature are in phase with orbital eccentricity, whereas ice volume lags these three variables. Hence, the 100,000-year cycle does not arise from ice sheet dynamics; instead, it is probably the response of the global carbon cycle that generates the eccentricity signal by causing changes in atmospheric carbon dioxide concentration.</abstract><cop>Washington, DC</cop><pub>American Society for the Advancement of Science</pub><pmid>10988063</pmid><doi>10.1126/science.289.5486.1897</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2000-09, Vol.289 (5486), p.1897-1902
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_743497722
source JSTOR Archive Collection A-Z Listing; American Association for the Advancement of Science
subjects Atmospherics
Axial tilt
Carbon dioxide
Climate
Earth sciences
Earth, ocean, space
Exact sciences and technology
Geology
Glaciology
Ice
Ice sheets
Marine
Marine and continental quaternary
Mathematical Models
Measurement
Microbial rhodopsins
Natural cycles
Numerical eccentricity
Ocean temperature
Orbital eccentricity
Oxygen
Periodicity
Precession
Prehistoric era
Reaction Time
Sea level
Surficial geology
Temperature
Water
title The 100,000-Year Ice-Age Cycle Identified and Found to Lag Temperature, Carbon Dioxide, and Orbital Eccentricity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T17%3A10%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20100,000-Year%20Ice-Age%20Cycle%20Identified%20and%20Found%20to%20Lag%20Temperature,%20Carbon%20Dioxide,%20and%20Orbital%20Eccentricity&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Shackleton,%20Nicholas%20J.&rft.date=2000-09-15&rft.volume=289&rft.issue=5486&rft.spage=1897&rft.epage=1902&rft.pages=1897-1902&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.289.5486.1897&rft_dat=%3Cgale_proqu%3EA65730712%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213569614&rft_id=info:pmid/10988063&rft_galeid=A65730712&rft_jstor_id=3077678&rfr_iscdi=true