Strain-induced metal-insulator phase coexistence in perovskite manganites

The coexistence of distinct metallic and insulating electronic phases within the same sample of a perovskite manganite, such as La1-x-yPryCaxMnO3, presents researchers with a tool for tuning the electronic properties in materials. In particular, colossal magnetoresistance in these materials-the dram...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature 2004-03, Vol.428 (6981), p.401-404
Hauptverfasser: Ahn, K. H, Lookman, T, Bishop, A. R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 404
container_issue 6981
container_start_page 401
container_title Nature
container_volume 428
creator Ahn, K. H
Lookman, T
Bishop, A. R
description The coexistence of distinct metallic and insulating electronic phases within the same sample of a perovskite manganite, such as La1-x-yPryCaxMnO3, presents researchers with a tool for tuning the electronic properties in materials. In particular, colossal magnetoresistance in these materials-the dramatic reduction of resistivity in a magnetic field-is closely related to the observed texture owing to nanometre- and micrometre-scale inhomogeneities. Despite accumulated data from various high-resolution probes, a theoretical understanding for the existence of such inhomogeneities has been lacking. Mechanisms invoked so far, usually based on electronic mechanisms and chemical disorder, have been inadequate to describe the multiscale, multiphase coexistence within a unified picture. Moreover, lattice distortions and long-range strains are known to be important in the manganites. Here we show that the texturing can be due to the intrinsic complexity of a system with strong coupling between the electronic and elastic degrees of freedom. This leads to local energetically favourable configurations and provides a natural mechanism for the self-organized inhomogeneities over both nanometre and micrometre scales. The framework provides a physical understanding of various experimental results and a basis for engineering nanoscale patterns of metallic and insulating phases.
doi_str_mv 10.1038/nature02364
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_743492691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A186371164</galeid><sourcerecordid>A186371164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c708t-b06e969c75495ce5ca6696405758fc1c4638b58492fd99f3f52ceebc5b835fa3</originalsourceid><addsrcrecordid>eNqF0luL1DAUAOAiijuuPvkuVVAR7Zo0l6aPw-BlYFFwB3wMaXpas7ZpN0ll999vlg7OjIxKHprLd07a05MkTzE6w4iI91aFyQHKCaf3kgWmBc8oF8X9ZIFQLjIkCD9JHnl_iRBiuKAPkxPMEM3jwSJZXwSnjM2MrScNddpDUF1c-alTYXDp-EN5SPUA18YHsBpSY9MR3PDL_zQB0l7ZVtk484-TB43qPDzZPk-TzccPm9Xn7Pzrp_VqeZ7pAomQVYhDyUtdMFoyDUwrzktOESuYaDTWlBNRMUHLvKnLsiENyzVApVklCGsUOU1ez2lHN1xN4IPsjdfQdcrCMHlZUBJjeYmjfPVviQteEob-C3NBcXwjHuGLP-DlMDkbv1bmiDImyuIOZTNqVQfS2GaIFdYtWHCqGyw0Jm4vseCkwJjTXdIDr0dzJffR2REURw290UezvjkIiCbAdWjV5L1cX3w7tG__bpeb76svR7V2g_cOGjk60yt3IzGSdw0p9xoy6mfbkk1VD_XObjswgpdboLxWXeOU1cbvuXhv_J3RvZudj0e2Bber_fF7n8983vydb9_cAvya_7E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204558976</pqid></control><display><type>article</type><title>Strain-induced metal-insulator phase coexistence in perovskite manganites</title><source>SpringerLink Journals</source><source>Nature</source><creator>Ahn, K. H ; Lookman, T ; Bishop, A. R</creator><creatorcontrib>Ahn, K. H ; Lookman, T ; Bishop, A. R</creatorcontrib><description>The coexistence of distinct metallic and insulating electronic phases within the same sample of a perovskite manganite, such as La1-x-yPryCaxMnO3, presents researchers with a tool for tuning the electronic properties in materials. In particular, colossal magnetoresistance in these materials-the dramatic reduction of resistivity in a magnetic field-is closely related to the observed texture owing to nanometre- and micrometre-scale inhomogeneities. Despite accumulated data from various high-resolution probes, a theoretical understanding for the existence of such inhomogeneities has been lacking. Mechanisms invoked so far, usually based on electronic mechanisms and chemical disorder, have been inadequate to describe the multiscale, multiphase coexistence within a unified picture. Moreover, lattice distortions and long-range strains are known to be important in the manganites. Here we show that the texturing can be due to the intrinsic complexity of a system with strong coupling between the electronic and elastic degrees of freedom. This leads to local energetically favourable configurations and provides a natural mechanism for the self-organized inhomogeneities over both nanometre and micrometre scales. The framework provides a physical understanding of various experimental results and a basis for engineering nanoscale patterns of metallic and insulating phases.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature02364</identifier><identifier>PMID: 15042083</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Electron states ; Exact sciences and technology ; Humanities and Social Sciences ; letter ; Magnetic fields ; Magnetic properties and materials ; Magnetotransport phenomena, materials for magnetotransport ; Manganese compounds ; Manganites ; Metal-insulator transitions and other electronic transitions ; Metallography ; Metals ; multidisciplinary ; Physics ; Science ; Science (multidisciplinary)</subject><ispartof>Nature, 2004-03, Vol.428 (6981), p.401-404</ispartof><rights>Macmillan Magazines Ltd. 2004</rights><rights>2004 INIST-CNRS</rights><rights>COPYRIGHT 2004 Nature Publishing Group</rights><rights>Copyright Macmillan Journals Ltd. Mar 25, 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c708t-b06e969c75495ce5ca6696405758fc1c4638b58492fd99f3f52ceebc5b835fa3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature02364$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature02364$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,2727,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15637269$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15042083$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ahn, K. H</creatorcontrib><creatorcontrib>Lookman, T</creatorcontrib><creatorcontrib>Bishop, A. R</creatorcontrib><title>Strain-induced metal-insulator phase coexistence in perovskite manganites</title><title>Nature</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>The coexistence of distinct metallic and insulating electronic phases within the same sample of a perovskite manganite, such as La1-x-yPryCaxMnO3, presents researchers with a tool for tuning the electronic properties in materials. In particular, colossal magnetoresistance in these materials-the dramatic reduction of resistivity in a magnetic field-is closely related to the observed texture owing to nanometre- and micrometre-scale inhomogeneities. Despite accumulated data from various high-resolution probes, a theoretical understanding for the existence of such inhomogeneities has been lacking. Mechanisms invoked so far, usually based on electronic mechanisms and chemical disorder, have been inadequate to describe the multiscale, multiphase coexistence within a unified picture. Moreover, lattice distortions and long-range strains are known to be important in the manganites. Here we show that the texturing can be due to the intrinsic complexity of a system with strong coupling between the electronic and elastic degrees of freedom. This leads to local energetically favourable configurations and provides a natural mechanism for the self-organized inhomogeneities over both nanometre and micrometre scales. The framework provides a physical understanding of various experimental results and a basis for engineering nanoscale patterns of metallic and insulating phases.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Electron states</subject><subject>Exact sciences and technology</subject><subject>Humanities and Social Sciences</subject><subject>letter</subject><subject>Magnetic fields</subject><subject>Magnetic properties and materials</subject><subject>Magnetotransport phenomena, materials for magnetotransport</subject><subject>Manganese compounds</subject><subject>Manganites</subject><subject>Metal-insulator transitions and other electronic transitions</subject><subject>Metallography</subject><subject>Metals</subject><subject>multidisciplinary</subject><subject>Physics</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0luL1DAUAOAiijuuPvkuVVAR7Zo0l6aPw-BlYFFwB3wMaXpas7ZpN0ll999vlg7OjIxKHprLd07a05MkTzE6w4iI91aFyQHKCaf3kgWmBc8oF8X9ZIFQLjIkCD9JHnl_iRBiuKAPkxPMEM3jwSJZXwSnjM2MrScNddpDUF1c-alTYXDp-EN5SPUA18YHsBpSY9MR3PDL_zQB0l7ZVtk484-TB43qPDzZPk-TzccPm9Xn7Pzrp_VqeZ7pAomQVYhDyUtdMFoyDUwrzktOESuYaDTWlBNRMUHLvKnLsiENyzVApVklCGsUOU1ez2lHN1xN4IPsjdfQdcrCMHlZUBJjeYmjfPVviQteEob-C3NBcXwjHuGLP-DlMDkbv1bmiDImyuIOZTNqVQfS2GaIFdYtWHCqGyw0Jm4vseCkwJjTXdIDr0dzJffR2REURw290UezvjkIiCbAdWjV5L1cX3w7tG__bpeb76svR7V2g_cOGjk60yt3IzGSdw0p9xoy6mfbkk1VD_XObjswgpdboLxWXeOU1cbvuXhv_J3RvZudj0e2Bber_fF7n8983vydb9_cAvya_7E</recordid><startdate>20040325</startdate><enddate>20040325</enddate><creator>Ahn, K. H</creator><creator>Lookman, T</creator><creator>Bishop, A. R</creator><general>Nature Publishing Group UK</general><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20040325</creationdate><title>Strain-induced metal-insulator phase coexistence in perovskite manganites</title><author>Ahn, K. H ; Lookman, T ; Bishop, A. R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c708t-b06e969c75495ce5ca6696405758fc1c4638b58492fd99f3f52ceebc5b835fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Electron states</topic><topic>Exact sciences and technology</topic><topic>Humanities and Social Sciences</topic><topic>letter</topic><topic>Magnetic fields</topic><topic>Magnetic properties and materials</topic><topic>Magnetotransport phenomena, materials for magnetotransport</topic><topic>Manganese compounds</topic><topic>Manganites</topic><topic>Metal-insulator transitions and other electronic transitions</topic><topic>Metallography</topic><topic>Metals</topic><topic>multidisciplinary</topic><topic>Physics</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahn, K. H</creatorcontrib><creatorcontrib>Lookman, T</creatorcontrib><creatorcontrib>Bishop, A. R</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nature</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahn, K. H</au><au>Lookman, T</au><au>Bishop, A. R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strain-induced metal-insulator phase coexistence in perovskite manganites</atitle><jtitle>Nature</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2004-03-25</date><risdate>2004</risdate><volume>428</volume><issue>6981</issue><spage>401</spage><epage>404</epage><pages>401-404</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>The coexistence of distinct metallic and insulating electronic phases within the same sample of a perovskite manganite, such as La1-x-yPryCaxMnO3, presents researchers with a tool for tuning the electronic properties in materials. In particular, colossal magnetoresistance in these materials-the dramatic reduction of resistivity in a magnetic field-is closely related to the observed texture owing to nanometre- and micrometre-scale inhomogeneities. Despite accumulated data from various high-resolution probes, a theoretical understanding for the existence of such inhomogeneities has been lacking. Mechanisms invoked so far, usually based on electronic mechanisms and chemical disorder, have been inadequate to describe the multiscale, multiphase coexistence within a unified picture. Moreover, lattice distortions and long-range strains are known to be important in the manganites. Here we show that the texturing can be due to the intrinsic complexity of a system with strong coupling between the electronic and elastic degrees of freedom. This leads to local energetically favourable configurations and provides a natural mechanism for the self-organized inhomogeneities over both nanometre and micrometre scales. The framework provides a physical understanding of various experimental results and a basis for engineering nanoscale patterns of metallic and insulating phases.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>15042083</pmid><doi>10.1038/nature02364</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature, 2004-03, Vol.428 (6981), p.401-404
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_743492691
source SpringerLink Journals; Nature
subjects Condensed matter: electronic structure, electrical, magnetic, and optical properties
Electron states
Exact sciences and technology
Humanities and Social Sciences
letter
Magnetic fields
Magnetic properties and materials
Magnetotransport phenomena, materials for magnetotransport
Manganese compounds
Manganites
Metal-insulator transitions and other electronic transitions
Metallography
Metals
multidisciplinary
Physics
Science
Science (multidisciplinary)
title Strain-induced metal-insulator phase coexistence in perovskite manganites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A55%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strain-induced%20metal-insulator%20phase%20coexistence%20in%20perovskite%20manganites&rft.jtitle=Nature&rft.au=Ahn,%20K.%20H&rft.date=2004-03-25&rft.volume=428&rft.issue=6981&rft.spage=401&rft.epage=404&rft.pages=401-404&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature02364&rft_dat=%3Cgale_proqu%3EA186371164%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204558976&rft_id=info:pmid/15042083&rft_galeid=A186371164&rfr_iscdi=true