Stress relaxation microscopy: Imaging local stress in cells

Abstract Biomechanics is gaining relevance as complementary discipline to structural and cellular biology. The response of cells to mechanical stimuli determines cell type and function, while the spatial distribution of mechanical forces within the cells is crucial to understand cell activity. The e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomechanics 2010-01, Vol.43 (2), p.349-354
Hauptverfasser: Moreno-Flores, Susana, Benitez, Rafael, Vivanco, Maria dM, Toca-Herrera, José Luis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 354
container_issue 2
container_start_page 349
container_title Journal of biomechanics
container_volume 43
creator Moreno-Flores, Susana
Benitez, Rafael
Vivanco, Maria dM
Toca-Herrera, José Luis
description Abstract Biomechanics is gaining relevance as complementary discipline to structural and cellular biology. The response of cells to mechanical stimuli determines cell type and function, while the spatial distribution of mechanical forces within the cells is crucial to understand cell activity. The experimental methodologies to approach cell mechanics are diverse but either they are effective in few cases or they rule out the innate cell complexity. In this regard, we have developed a simple scanning probe-based methodology that overcomes the limitations of the available methods. Stress relaxation, the decay of the force exerted by the cell surface at constant deformation, has been used to extract relaxational responses at each cellular sublocalisation and generate maps. Surprisingly, decay curves exerted by test cells are fully described by a generalized viscoelastic model that accounts for more than one simultaneously occurring relaxations. Within the range of applied forces (0.5–4 nN) a slow and a fast relaxation with characteristic times of 0.1 and 1 s have been detected and assigned to rearrangements of cell membrane and cytoskeleton, respectively. Relaxation time mapping of entire cells is thus promising to simultaneously detect non-uniformities in membrane and cytoskeleton and as identifying tool for cell type and disease.
doi_str_mv 10.1016/j.jbiomech.2009.07.037
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743484834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021929009004862</els_id><sourcerecordid>743484834</sourcerecordid><originalsourceid>FETCH-LOGICAL-c578t-3056f0efc0367f6b30e91f4686af60188c923d59bf49425eecf33f5d74af51763</originalsourceid><addsrcrecordid>eNqFkltr3DAQhUVpaLZp_0IwlNInu6OLJauF0BB6CQTykPZZaOVRKteXreQN2X8fmd02kJeAYF6-OZo5Zwg5pVBRoPJjV3XrMA3oflcMQFegKuDqBVnRRvGS8QZekhUAo6VmGo7J65Q6AFBC6VfkmGqlmJZiRT7fzBFTKiL29t7OYRqLIbg4JTdtdp-Ky8HehvG26Cdn-yLt2TAWDvs-vSFH3vYJ3x7qCfn17evPix_l1fX3y4vzq9LVqplLDrX0gN4Bl8rLNQfU1AvZSOsl0KZxmvG21msvtGA1ovOc-7pVwvqaKslPyIe97iZOf7eYZjOEtExgR5y2ySjBRSMaLp4nOVeUilpn8t0Tspu2ccxrGApc6JpRuejJPbU4kiJ6s4lhsHGXIbPkYDrzLwez5GBAmZxDbjw9yG_XA7aPbQfjM_D-ANiUrfXRji6k_xxjXKvsV-a-7DnMBt8FjCa5gKPDNkR0s2mn8PwsZ08kXB_GkH_9gztMj3ubxAyYm-VqlqOB_EQjGX8Auwq8NQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1034952164</pqid></control><display><type>article</type><title>Stress relaxation microscopy: Imaging local stress in cells</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Moreno-Flores, Susana ; Benitez, Rafael ; Vivanco, Maria dM ; Toca-Herrera, José Luis</creator><creatorcontrib>Moreno-Flores, Susana ; Benitez, Rafael ; Vivanco, Maria dM ; Toca-Herrera, José Luis</creatorcontrib><description>Abstract Biomechanics is gaining relevance as complementary discipline to structural and cellular biology. The response of cells to mechanical stimuli determines cell type and function, while the spatial distribution of mechanical forces within the cells is crucial to understand cell activity. The experimental methodologies to approach cell mechanics are diverse but either they are effective in few cases or they rule out the innate cell complexity. In this regard, we have developed a simple scanning probe-based methodology that overcomes the limitations of the available methods. Stress relaxation, the decay of the force exerted by the cell surface at constant deformation, has been used to extract relaxational responses at each cellular sublocalisation and generate maps. Surprisingly, decay curves exerted by test cells are fully described by a generalized viscoelastic model that accounts for more than one simultaneously occurring relaxations. Within the range of applied forces (0.5–4 nN) a slow and a fast relaxation with characteristic times of 0.1 and 1 s have been detected and assigned to rearrangements of cell membrane and cytoskeleton, respectively. Relaxation time mapping of entire cells is thus promising to simultaneously detect non-uniformities in membrane and cytoskeleton and as identifying tool for cell type and disease.</description><identifier>ISSN: 0021-9290</identifier><identifier>EISSN: 1873-2380</identifier><identifier>DOI: 10.1016/j.jbiomech.2009.07.037</identifier><identifier>PMID: 19772964</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Atomic force microscopy ; Biological and medical sciences ; Biomechanical Phenomena ; Biomechanics ; Breast cancer ; Breast Neoplasms - pathology ; Breast Neoplasms - physiopathology ; Cell culture ; Cell Line, Tumor ; Cell Membrane - physiology ; Cell Physiological Phenomena ; Cells ; Compressive Strength ; Conflicts of interest ; Cytoskeleton - physiology ; Elasticity ; Elasticity Imaging Techniques - methods ; Experiments ; Female ; Fundamental and applied biological sciences. Psychology ; Glass substrates ; Humans ; Mechanical properties ; Microscopy ; Microscopy - methods ; Models, Biological ; Molecular and cellular biology ; Physical Medicine and Rehabilitation ; Stress relaxation ; Viscosity</subject><ispartof>Journal of biomechanics, 2010-01, Vol.43 (2), p.349-354</ispartof><rights>Elsevier Ltd</rights><rights>2009 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright 2009 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c578t-3056f0efc0367f6b30e91f4686af60188c923d59bf49425eecf33f5d74af51763</citedby><cites>FETCH-LOGICAL-c578t-3056f0efc0367f6b30e91f4686af60188c923d59bf49425eecf33f5d74af51763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021929009004862$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22397036$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19772964$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moreno-Flores, Susana</creatorcontrib><creatorcontrib>Benitez, Rafael</creatorcontrib><creatorcontrib>Vivanco, Maria dM</creatorcontrib><creatorcontrib>Toca-Herrera, José Luis</creatorcontrib><title>Stress relaxation microscopy: Imaging local stress in cells</title><title>Journal of biomechanics</title><addtitle>J Biomech</addtitle><description>Abstract Biomechanics is gaining relevance as complementary discipline to structural and cellular biology. The response of cells to mechanical stimuli determines cell type and function, while the spatial distribution of mechanical forces within the cells is crucial to understand cell activity. The experimental methodologies to approach cell mechanics are diverse but either they are effective in few cases or they rule out the innate cell complexity. In this regard, we have developed a simple scanning probe-based methodology that overcomes the limitations of the available methods. Stress relaxation, the decay of the force exerted by the cell surface at constant deformation, has been used to extract relaxational responses at each cellular sublocalisation and generate maps. Surprisingly, decay curves exerted by test cells are fully described by a generalized viscoelastic model that accounts for more than one simultaneously occurring relaxations. Within the range of applied forces (0.5–4 nN) a slow and a fast relaxation with characteristic times of 0.1 and 1 s have been detected and assigned to rearrangements of cell membrane and cytoskeleton, respectively. Relaxation time mapping of entire cells is thus promising to simultaneously detect non-uniformities in membrane and cytoskeleton and as identifying tool for cell type and disease.</description><subject>Atomic force microscopy</subject><subject>Biological and medical sciences</subject><subject>Biomechanical Phenomena</subject><subject>Biomechanics</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - pathology</subject><subject>Breast Neoplasms - physiopathology</subject><subject>Cell culture</subject><subject>Cell Line, Tumor</subject><subject>Cell Membrane - physiology</subject><subject>Cell Physiological Phenomena</subject><subject>Cells</subject><subject>Compressive Strength</subject><subject>Conflicts of interest</subject><subject>Cytoskeleton - physiology</subject><subject>Elasticity</subject><subject>Elasticity Imaging Techniques - methods</subject><subject>Experiments</subject><subject>Female</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glass substrates</subject><subject>Humans</subject><subject>Mechanical properties</subject><subject>Microscopy</subject><subject>Microscopy - methods</subject><subject>Models, Biological</subject><subject>Molecular and cellular biology</subject><subject>Physical Medicine and Rehabilitation</subject><subject>Stress relaxation</subject><subject>Viscosity</subject><issn>0021-9290</issn><issn>1873-2380</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkltr3DAQhUVpaLZp_0IwlNInu6OLJauF0BB6CQTykPZZaOVRKteXreQN2X8fmd02kJeAYF6-OZo5Zwg5pVBRoPJjV3XrMA3oflcMQFegKuDqBVnRRvGS8QZekhUAo6VmGo7J65Q6AFBC6VfkmGqlmJZiRT7fzBFTKiL29t7OYRqLIbg4JTdtdp-Ky8HehvG26Cdn-yLt2TAWDvs-vSFH3vYJ3x7qCfn17evPix_l1fX3y4vzq9LVqplLDrX0gN4Bl8rLNQfU1AvZSOsl0KZxmvG21msvtGA1ovOc-7pVwvqaKslPyIe97iZOf7eYZjOEtExgR5y2ySjBRSMaLp4nOVeUilpn8t0Tspu2ccxrGApc6JpRuejJPbU4kiJ6s4lhsHGXIbPkYDrzLwez5GBAmZxDbjw9yG_XA7aPbQfjM_D-ANiUrfXRji6k_xxjXKvsV-a-7DnMBt8FjCa5gKPDNkR0s2mn8PwsZ08kXB_GkH_9gztMj3ubxAyYm-VqlqOB_EQjGX8Auwq8NQ</recordid><startdate>20100119</startdate><enddate>20100119</enddate><creator>Moreno-Flores, Susana</creator><creator>Benitez, Rafael</creator><creator>Vivanco, Maria dM</creator><creator>Toca-Herrera, José Luis</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Elsevier Limited</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TB</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20100119</creationdate><title>Stress relaxation microscopy: Imaging local stress in cells</title><author>Moreno-Flores, Susana ; Benitez, Rafael ; Vivanco, Maria dM ; Toca-Herrera, José Luis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c578t-3056f0efc0367f6b30e91f4686af60188c923d59bf49425eecf33f5d74af51763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Atomic force microscopy</topic><topic>Biological and medical sciences</topic><topic>Biomechanical Phenomena</topic><topic>Biomechanics</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - pathology</topic><topic>Breast Neoplasms - physiopathology</topic><topic>Cell culture</topic><topic>Cell Line, Tumor</topic><topic>Cell Membrane - physiology</topic><topic>Cell Physiological Phenomena</topic><topic>Cells</topic><topic>Compressive Strength</topic><topic>Conflicts of interest</topic><topic>Cytoskeleton - physiology</topic><topic>Elasticity</topic><topic>Elasticity Imaging Techniques - methods</topic><topic>Experiments</topic><topic>Female</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glass substrates</topic><topic>Humans</topic><topic>Mechanical properties</topic><topic>Microscopy</topic><topic>Microscopy - methods</topic><topic>Models, Biological</topic><topic>Molecular and cellular biology</topic><topic>Physical Medicine and Rehabilitation</topic><topic>Stress relaxation</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moreno-Flores, Susana</creatorcontrib><creatorcontrib>Benitez, Rafael</creatorcontrib><creatorcontrib>Vivanco, Maria dM</creatorcontrib><creatorcontrib>Toca-Herrera, José Luis</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moreno-Flores, Susana</au><au>Benitez, Rafael</au><au>Vivanco, Maria dM</au><au>Toca-Herrera, José Luis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stress relaxation microscopy: Imaging local stress in cells</atitle><jtitle>Journal of biomechanics</jtitle><addtitle>J Biomech</addtitle><date>2010-01-19</date><risdate>2010</risdate><volume>43</volume><issue>2</issue><spage>349</spage><epage>354</epage><pages>349-354</pages><issn>0021-9290</issn><eissn>1873-2380</eissn><abstract>Abstract Biomechanics is gaining relevance as complementary discipline to structural and cellular biology. The response of cells to mechanical stimuli determines cell type and function, while the spatial distribution of mechanical forces within the cells is crucial to understand cell activity. The experimental methodologies to approach cell mechanics are diverse but either they are effective in few cases or they rule out the innate cell complexity. In this regard, we have developed a simple scanning probe-based methodology that overcomes the limitations of the available methods. Stress relaxation, the decay of the force exerted by the cell surface at constant deformation, has been used to extract relaxational responses at each cellular sublocalisation and generate maps. Surprisingly, decay curves exerted by test cells are fully described by a generalized viscoelastic model that accounts for more than one simultaneously occurring relaxations. Within the range of applied forces (0.5–4 nN) a slow and a fast relaxation with characteristic times of 0.1 and 1 s have been detected and assigned to rearrangements of cell membrane and cytoskeleton, respectively. Relaxation time mapping of entire cells is thus promising to simultaneously detect non-uniformities in membrane and cytoskeleton and as identifying tool for cell type and disease.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>19772964</pmid><doi>10.1016/j.jbiomech.2009.07.037</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9290
ispartof Journal of biomechanics, 2010-01, Vol.43 (2), p.349-354
issn 0021-9290
1873-2380
language eng
recordid cdi_proquest_miscellaneous_743484834
source MEDLINE; Elsevier ScienceDirect Journals
subjects Atomic force microscopy
Biological and medical sciences
Biomechanical Phenomena
Biomechanics
Breast cancer
Breast Neoplasms - pathology
Breast Neoplasms - physiopathology
Cell culture
Cell Line, Tumor
Cell Membrane - physiology
Cell Physiological Phenomena
Cells
Compressive Strength
Conflicts of interest
Cytoskeleton - physiology
Elasticity
Elasticity Imaging Techniques - methods
Experiments
Female
Fundamental and applied biological sciences. Psychology
Glass substrates
Humans
Mechanical properties
Microscopy
Microscopy - methods
Models, Biological
Molecular and cellular biology
Physical Medicine and Rehabilitation
Stress relaxation
Viscosity
title Stress relaxation microscopy: Imaging local stress in cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A42%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stress%20relaxation%20microscopy:%20Imaging%20local%20stress%20in%20cells&rft.jtitle=Journal%20of%20biomechanics&rft.au=Moreno-Flores,%20Susana&rft.date=2010-01-19&rft.volume=43&rft.issue=2&rft.spage=349&rft.epage=354&rft.pages=349-354&rft.issn=0021-9290&rft.eissn=1873-2380&rft_id=info:doi/10.1016/j.jbiomech.2009.07.037&rft_dat=%3Cproquest_cross%3E743484834%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1034952164&rft_id=info:pmid/19772964&rft_els_id=S0021929009004862&rfr_iscdi=true