Stress relaxation microscopy: Imaging local stress in cells
Abstract Biomechanics is gaining relevance as complementary discipline to structural and cellular biology. The response of cells to mechanical stimuli determines cell type and function, while the spatial distribution of mechanical forces within the cells is crucial to understand cell activity. The e...
Gespeichert in:
Veröffentlicht in: | Journal of biomechanics 2010-01, Vol.43 (2), p.349-354 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 354 |
---|---|
container_issue | 2 |
container_start_page | 349 |
container_title | Journal of biomechanics |
container_volume | 43 |
creator | Moreno-Flores, Susana Benitez, Rafael Vivanco, Maria dM Toca-Herrera, José Luis |
description | Abstract Biomechanics is gaining relevance as complementary discipline to structural and cellular biology. The response of cells to mechanical stimuli determines cell type and function, while the spatial distribution of mechanical forces within the cells is crucial to understand cell activity. The experimental methodologies to approach cell mechanics are diverse but either they are effective in few cases or they rule out the innate cell complexity. In this regard, we have developed a simple scanning probe-based methodology that overcomes the limitations of the available methods. Stress relaxation, the decay of the force exerted by the cell surface at constant deformation, has been used to extract relaxational responses at each cellular sublocalisation and generate maps. Surprisingly, decay curves exerted by test cells are fully described by a generalized viscoelastic model that accounts for more than one simultaneously occurring relaxations. Within the range of applied forces (0.5–4 nN) a slow and a fast relaxation with characteristic times of 0.1 and 1 s have been detected and assigned to rearrangements of cell membrane and cytoskeleton, respectively. Relaxation time mapping of entire cells is thus promising to simultaneously detect non-uniformities in membrane and cytoskeleton and as identifying tool for cell type and disease. |
doi_str_mv | 10.1016/j.jbiomech.2009.07.037 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743484834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021929009004862</els_id><sourcerecordid>743484834</sourcerecordid><originalsourceid>FETCH-LOGICAL-c578t-3056f0efc0367f6b30e91f4686af60188c923d59bf49425eecf33f5d74af51763</originalsourceid><addsrcrecordid>eNqFkltr3DAQhUVpaLZp_0IwlNInu6OLJauF0BB6CQTykPZZaOVRKteXreQN2X8fmd02kJeAYF6-OZo5Zwg5pVBRoPJjV3XrMA3oflcMQFegKuDqBVnRRvGS8QZekhUAo6VmGo7J65Q6AFBC6VfkmGqlmJZiRT7fzBFTKiL29t7OYRqLIbg4JTdtdp-Ky8HehvG26Cdn-yLt2TAWDvs-vSFH3vYJ3x7qCfn17evPix_l1fX3y4vzq9LVqplLDrX0gN4Bl8rLNQfU1AvZSOsl0KZxmvG21msvtGA1ovOc-7pVwvqaKslPyIe97iZOf7eYZjOEtExgR5y2ySjBRSMaLp4nOVeUilpn8t0Tspu2ccxrGApc6JpRuejJPbU4kiJ6s4lhsHGXIbPkYDrzLwez5GBAmZxDbjw9yG_XA7aPbQfjM_D-ANiUrfXRji6k_xxjXKvsV-a-7DnMBt8FjCa5gKPDNkR0s2mn8PwsZ08kXB_GkH_9gztMj3ubxAyYm-VqlqOB_EQjGX8Auwq8NQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1034952164</pqid></control><display><type>article</type><title>Stress relaxation microscopy: Imaging local stress in cells</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Moreno-Flores, Susana ; Benitez, Rafael ; Vivanco, Maria dM ; Toca-Herrera, José Luis</creator><creatorcontrib>Moreno-Flores, Susana ; Benitez, Rafael ; Vivanco, Maria dM ; Toca-Herrera, José Luis</creatorcontrib><description>Abstract Biomechanics is gaining relevance as complementary discipline to structural and cellular biology. The response of cells to mechanical stimuli determines cell type and function, while the spatial distribution of mechanical forces within the cells is crucial to understand cell activity. The experimental methodologies to approach cell mechanics are diverse but either they are effective in few cases or they rule out the innate cell complexity. In this regard, we have developed a simple scanning probe-based methodology that overcomes the limitations of the available methods. Stress relaxation, the decay of the force exerted by the cell surface at constant deformation, has been used to extract relaxational responses at each cellular sublocalisation and generate maps. Surprisingly, decay curves exerted by test cells are fully described by a generalized viscoelastic model that accounts for more than one simultaneously occurring relaxations. Within the range of applied forces (0.5–4 nN) a slow and a fast relaxation with characteristic times of 0.1 and 1 s have been detected and assigned to rearrangements of cell membrane and cytoskeleton, respectively. Relaxation time mapping of entire cells is thus promising to simultaneously detect non-uniformities in membrane and cytoskeleton and as identifying tool for cell type and disease.</description><identifier>ISSN: 0021-9290</identifier><identifier>EISSN: 1873-2380</identifier><identifier>DOI: 10.1016/j.jbiomech.2009.07.037</identifier><identifier>PMID: 19772964</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Atomic force microscopy ; Biological and medical sciences ; Biomechanical Phenomena ; Biomechanics ; Breast cancer ; Breast Neoplasms - pathology ; Breast Neoplasms - physiopathology ; Cell culture ; Cell Line, Tumor ; Cell Membrane - physiology ; Cell Physiological Phenomena ; Cells ; Compressive Strength ; Conflicts of interest ; Cytoskeleton - physiology ; Elasticity ; Elasticity Imaging Techniques - methods ; Experiments ; Female ; Fundamental and applied biological sciences. Psychology ; Glass substrates ; Humans ; Mechanical properties ; Microscopy ; Microscopy - methods ; Models, Biological ; Molecular and cellular biology ; Physical Medicine and Rehabilitation ; Stress relaxation ; Viscosity</subject><ispartof>Journal of biomechanics, 2010-01, Vol.43 (2), p.349-354</ispartof><rights>Elsevier Ltd</rights><rights>2009 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright 2009 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c578t-3056f0efc0367f6b30e91f4686af60188c923d59bf49425eecf33f5d74af51763</citedby><cites>FETCH-LOGICAL-c578t-3056f0efc0367f6b30e91f4686af60188c923d59bf49425eecf33f5d74af51763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021929009004862$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22397036$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19772964$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moreno-Flores, Susana</creatorcontrib><creatorcontrib>Benitez, Rafael</creatorcontrib><creatorcontrib>Vivanco, Maria dM</creatorcontrib><creatorcontrib>Toca-Herrera, José Luis</creatorcontrib><title>Stress relaxation microscopy: Imaging local stress in cells</title><title>Journal of biomechanics</title><addtitle>J Biomech</addtitle><description>Abstract Biomechanics is gaining relevance as complementary discipline to structural and cellular biology. The response of cells to mechanical stimuli determines cell type and function, while the spatial distribution of mechanical forces within the cells is crucial to understand cell activity. The experimental methodologies to approach cell mechanics are diverse but either they are effective in few cases or they rule out the innate cell complexity. In this regard, we have developed a simple scanning probe-based methodology that overcomes the limitations of the available methods. Stress relaxation, the decay of the force exerted by the cell surface at constant deformation, has been used to extract relaxational responses at each cellular sublocalisation and generate maps. Surprisingly, decay curves exerted by test cells are fully described by a generalized viscoelastic model that accounts for more than one simultaneously occurring relaxations. Within the range of applied forces (0.5–4 nN) a slow and a fast relaxation with characteristic times of 0.1 and 1 s have been detected and assigned to rearrangements of cell membrane and cytoskeleton, respectively. Relaxation time mapping of entire cells is thus promising to simultaneously detect non-uniformities in membrane and cytoskeleton and as identifying tool for cell type and disease.</description><subject>Atomic force microscopy</subject><subject>Biological and medical sciences</subject><subject>Biomechanical Phenomena</subject><subject>Biomechanics</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - pathology</subject><subject>Breast Neoplasms - physiopathology</subject><subject>Cell culture</subject><subject>Cell Line, Tumor</subject><subject>Cell Membrane - physiology</subject><subject>Cell Physiological Phenomena</subject><subject>Cells</subject><subject>Compressive Strength</subject><subject>Conflicts of interest</subject><subject>Cytoskeleton - physiology</subject><subject>Elasticity</subject><subject>Elasticity Imaging Techniques - methods</subject><subject>Experiments</subject><subject>Female</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glass substrates</subject><subject>Humans</subject><subject>Mechanical properties</subject><subject>Microscopy</subject><subject>Microscopy - methods</subject><subject>Models, Biological</subject><subject>Molecular and cellular biology</subject><subject>Physical Medicine and Rehabilitation</subject><subject>Stress relaxation</subject><subject>Viscosity</subject><issn>0021-9290</issn><issn>1873-2380</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkltr3DAQhUVpaLZp_0IwlNInu6OLJauF0BB6CQTykPZZaOVRKteXreQN2X8fmd02kJeAYF6-OZo5Zwg5pVBRoPJjV3XrMA3oflcMQFegKuDqBVnRRvGS8QZekhUAo6VmGo7J65Q6AFBC6VfkmGqlmJZiRT7fzBFTKiL29t7OYRqLIbg4JTdtdp-Ky8HehvG26Cdn-yLt2TAWDvs-vSFH3vYJ3x7qCfn17evPix_l1fX3y4vzq9LVqplLDrX0gN4Bl8rLNQfU1AvZSOsl0KZxmvG21msvtGA1ovOc-7pVwvqaKslPyIe97iZOf7eYZjOEtExgR5y2ySjBRSMaLp4nOVeUilpn8t0Tspu2ccxrGApc6JpRuejJPbU4kiJ6s4lhsHGXIbPkYDrzLwez5GBAmZxDbjw9yG_XA7aPbQfjM_D-ANiUrfXRji6k_xxjXKvsV-a-7DnMBt8FjCa5gKPDNkR0s2mn8PwsZ08kXB_GkH_9gztMj3ubxAyYm-VqlqOB_EQjGX8Auwq8NQ</recordid><startdate>20100119</startdate><enddate>20100119</enddate><creator>Moreno-Flores, Susana</creator><creator>Benitez, Rafael</creator><creator>Vivanco, Maria dM</creator><creator>Toca-Herrera, José Luis</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Elsevier Limited</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TB</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20100119</creationdate><title>Stress relaxation microscopy: Imaging local stress in cells</title><author>Moreno-Flores, Susana ; Benitez, Rafael ; Vivanco, Maria dM ; Toca-Herrera, José Luis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c578t-3056f0efc0367f6b30e91f4686af60188c923d59bf49425eecf33f5d74af51763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Atomic force microscopy</topic><topic>Biological and medical sciences</topic><topic>Biomechanical Phenomena</topic><topic>Biomechanics</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - pathology</topic><topic>Breast Neoplasms - physiopathology</topic><topic>Cell culture</topic><topic>Cell Line, Tumor</topic><topic>Cell Membrane - physiology</topic><topic>Cell Physiological Phenomena</topic><topic>Cells</topic><topic>Compressive Strength</topic><topic>Conflicts of interest</topic><topic>Cytoskeleton - physiology</topic><topic>Elasticity</topic><topic>Elasticity Imaging Techniques - methods</topic><topic>Experiments</topic><topic>Female</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glass substrates</topic><topic>Humans</topic><topic>Mechanical properties</topic><topic>Microscopy</topic><topic>Microscopy - methods</topic><topic>Models, Biological</topic><topic>Molecular and cellular biology</topic><topic>Physical Medicine and Rehabilitation</topic><topic>Stress relaxation</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moreno-Flores, Susana</creatorcontrib><creatorcontrib>Benitez, Rafael</creatorcontrib><creatorcontrib>Vivanco, Maria dM</creatorcontrib><creatorcontrib>Toca-Herrera, José Luis</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moreno-Flores, Susana</au><au>Benitez, Rafael</au><au>Vivanco, Maria dM</au><au>Toca-Herrera, José Luis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stress relaxation microscopy: Imaging local stress in cells</atitle><jtitle>Journal of biomechanics</jtitle><addtitle>J Biomech</addtitle><date>2010-01-19</date><risdate>2010</risdate><volume>43</volume><issue>2</issue><spage>349</spage><epage>354</epage><pages>349-354</pages><issn>0021-9290</issn><eissn>1873-2380</eissn><abstract>Abstract Biomechanics is gaining relevance as complementary discipline to structural and cellular biology. The response of cells to mechanical stimuli determines cell type and function, while the spatial distribution of mechanical forces within the cells is crucial to understand cell activity. The experimental methodologies to approach cell mechanics are diverse but either they are effective in few cases or they rule out the innate cell complexity. In this regard, we have developed a simple scanning probe-based methodology that overcomes the limitations of the available methods. Stress relaxation, the decay of the force exerted by the cell surface at constant deformation, has been used to extract relaxational responses at each cellular sublocalisation and generate maps. Surprisingly, decay curves exerted by test cells are fully described by a generalized viscoelastic model that accounts for more than one simultaneously occurring relaxations. Within the range of applied forces (0.5–4 nN) a slow and a fast relaxation with characteristic times of 0.1 and 1 s have been detected and assigned to rearrangements of cell membrane and cytoskeleton, respectively. Relaxation time mapping of entire cells is thus promising to simultaneously detect non-uniformities in membrane and cytoskeleton and as identifying tool for cell type and disease.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>19772964</pmid><doi>10.1016/j.jbiomech.2009.07.037</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9290 |
ispartof | Journal of biomechanics, 2010-01, Vol.43 (2), p.349-354 |
issn | 0021-9290 1873-2380 |
language | eng |
recordid | cdi_proquest_miscellaneous_743484834 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Atomic force microscopy Biological and medical sciences Biomechanical Phenomena Biomechanics Breast cancer Breast Neoplasms - pathology Breast Neoplasms - physiopathology Cell culture Cell Line, Tumor Cell Membrane - physiology Cell Physiological Phenomena Cells Compressive Strength Conflicts of interest Cytoskeleton - physiology Elasticity Elasticity Imaging Techniques - methods Experiments Female Fundamental and applied biological sciences. Psychology Glass substrates Humans Mechanical properties Microscopy Microscopy - methods Models, Biological Molecular and cellular biology Physical Medicine and Rehabilitation Stress relaxation Viscosity |
title | Stress relaxation microscopy: Imaging local stress in cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A42%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stress%20relaxation%20microscopy:%20Imaging%20local%20stress%20in%20cells&rft.jtitle=Journal%20of%20biomechanics&rft.au=Moreno-Flores,%20Susana&rft.date=2010-01-19&rft.volume=43&rft.issue=2&rft.spage=349&rft.epage=354&rft.pages=349-354&rft.issn=0021-9290&rft.eissn=1873-2380&rft_id=info:doi/10.1016/j.jbiomech.2009.07.037&rft_dat=%3Cproquest_cross%3E743484834%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1034952164&rft_id=info:pmid/19772964&rft_els_id=S0021929009004862&rfr_iscdi=true |