Studies on targets for inertial fusion ignition demonstration at the HiPER facility

Recently, a European collaboration has proposed the High Power Laser Energy Research (HiPER) facility, with the primary goal of demonstrating laser driven inertial fusion fast ignition. HiPER is expected to provide 250 kJ in multiple, 3omega (wavelength lambda = 0.35 mum), nanosecond beams for compr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear fusion 2009-05, Vol.49 (5), p.055008-055008 (7)
Hauptverfasser: Atzeni, S, Davies, J.R, Hallo, L, Honrubia, J.J, Maire, P.H, Olazabal-Loumé, M, Feugeas, J.L, Ribeyre, X, Schiavi, A, Schurtz, G, Breil, J, Nicolaï, Ph
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 055008 (7)
container_issue 5
container_start_page 055008
container_title Nuclear fusion
container_volume 49
creator Atzeni, S
Davies, J.R
Hallo, L
Honrubia, J.J
Maire, P.H
Olazabal-Loumé, M
Feugeas, J.L
Ribeyre, X
Schiavi, A
Schurtz, G
Breil, J
Nicolaï, Ph
description Recently, a European collaboration has proposed the High Power Laser Energy Research (HiPER) facility, with the primary goal of demonstrating laser driven inertial fusion fast ignition. HiPER is expected to provide 250 kJ in multiple, 3omega (wavelength lambda = 0.35 mum), nanosecond beams for compression and 70 kJ in 10-20 ps, 2omega beams for ignition. The baseline approach is fast ignition by laser-accelerated fast electrons; cones are considered as a means to maximize ignition laser-fuel coupling. Earlier studies led to the identification of an all-DT shell, with a total mass of about 0.6 mg as a reference target concept. The HiPER main pulse can compress the fuel to a peak density above 500 g cm-3 and an areal density rhoR of about 1.5 g cm-2. Ignition of the compressed fuel requires that relativistic electrons deposit about 20 kJ in a volume of radius of about 15 mum and a depth of less than 1.2 g cm-2. The ignited target releases about 13 MJ. In this paper, additional analyses of this target are reported. An optimal irradiation pattern has been identified. The effects on fuel compression of the low-mode irradiation non-uniformities have been studied by 2D simulations and an analytical model. The scaling of the electron beam energy required for ignition (versus electron kinetic energy) has been determined by 2D fluid simulations including a 3D Monte Carlo treatment of relativistic electrons, and agrees with a simple model. Integrated simulations show that beam-induced magnetic fields can reduce beam divergence. As an alternative scheme, shock ignition is studied. 2D simulations have addressed optimization of shock timing and absorbed power, means to increase laser absorption efficiency and the interaction of the igniting shocks with a deformed fuel shell.
doi_str_mv 10.1088/0029-5515/49/5/055008
format Article
fullrecord <record><control><sourceid>proquest_iop_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_743484293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743484293</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-337b3c6aec846923198304ce499a20468e69820af44a3d95d491c49ee24ce73f3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsfQchFvLhu_u4mRynVCgXF6jnEbFIj2901SQ_99u66pRfF08zwfjPzeABcYnSLkRA5QkRmnGOeM5nzHHGOkDgCE1wynDFKimMwOTCn4CzGT4Qww5ROwGqVtpW3EbYNTDqsbYrQtQH6xobkdQ3dNvpe8-vGp6Gp7KZtYgr6Z9IJpg8LF_55_gKdNr72aXcOTpyuo73Y1yl4u5-_zhbZ8unhcXa3zAyVNGWUlu_UFNoawQpJKJaCImYsk1ITxAphCykI0o4xTSvJKyaxYdJa0kMldXQKrse7XWi_tjYmtfHR2LrWjW23UZWMMsGIpD3JR9KENsZgneqC3-iwUxipIUM15KOGfBTrqxoz7Peu9h90NLp2QTfGx8Mywb0lUpCeuxk533YH9c-TqqsG4-g3_r-Tb9j5jJ8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>743484293</pqid></control><display><type>article</type><title>Studies on targets for inertial fusion ignition demonstration at the HiPER facility</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Atzeni, S ; Davies, J.R ; Hallo, L ; Honrubia, J.J ; Maire, P.H ; Olazabal-Loumé, M ; Feugeas, J.L ; Ribeyre, X ; Schiavi, A ; Schurtz, G ; Breil, J ; Nicolaï, Ph</creator><creatorcontrib>Atzeni, S ; Davies, J.R ; Hallo, L ; Honrubia, J.J ; Maire, P.H ; Olazabal-Loumé, M ; Feugeas, J.L ; Ribeyre, X ; Schiavi, A ; Schurtz, G ; Breil, J ; Nicolaï, Ph</creatorcontrib><description>Recently, a European collaboration has proposed the High Power Laser Energy Research (HiPER) facility, with the primary goal of demonstrating laser driven inertial fusion fast ignition. HiPER is expected to provide 250 kJ in multiple, 3omega (wavelength lambda = 0.35 mum), nanosecond beams for compression and 70 kJ in 10-20 ps, 2omega beams for ignition. The baseline approach is fast ignition by laser-accelerated fast electrons; cones are considered as a means to maximize ignition laser-fuel coupling. Earlier studies led to the identification of an all-DT shell, with a total mass of about 0.6 mg as a reference target concept. The HiPER main pulse can compress the fuel to a peak density above 500 g cm-3 and an areal density rhoR of about 1.5 g cm-2. Ignition of the compressed fuel requires that relativistic electrons deposit about 20 kJ in a volume of radius of about 15 mum and a depth of less than 1.2 g cm-2. The ignited target releases about 13 MJ. In this paper, additional analyses of this target are reported. An optimal irradiation pattern has been identified. The effects on fuel compression of the low-mode irradiation non-uniformities have been studied by 2D simulations and an analytical model. The scaling of the electron beam energy required for ignition (versus electron kinetic energy) has been determined by 2D fluid simulations including a 3D Monte Carlo treatment of relativistic electrons, and agrees with a simple model. Integrated simulations show that beam-induced magnetic fields can reduce beam divergence. As an alternative scheme, shock ignition is studied. 2D simulations have addressed optimization of shock timing and absorbed power, means to increase laser absorption efficiency and the interaction of the igniting shocks with a deformed fuel shell.</description><identifier>ISSN: 0029-5515</identifier><identifier>EISSN: 1741-4326</identifier><identifier>DOI: 10.1088/0029-5515/49/5/055008</identifier><identifier>CODEN: NUFUAU</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Exact sciences and technology ; Fast ignition of compressed fusion fuels ; Laser inertial confinement ; Monte carlo methods ; Physics ; Physics of gases, plasmas and electric discharges ; Physics of plasmas and electric discharges ; Plasma simulation</subject><ispartof>Nuclear fusion, 2009-05, Vol.49 (5), p.055008-055008 (7)</ispartof><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-337b3c6aec846923198304ce499a20468e69820af44a3d95d491c49ee24ce73f3</citedby><cites>FETCH-LOGICAL-c393t-337b3c6aec846923198304ce499a20468e69820af44a3d95d491c49ee24ce73f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0029-5515/49/5/055008/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53805,53885</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21491262$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Atzeni, S</creatorcontrib><creatorcontrib>Davies, J.R</creatorcontrib><creatorcontrib>Hallo, L</creatorcontrib><creatorcontrib>Honrubia, J.J</creatorcontrib><creatorcontrib>Maire, P.H</creatorcontrib><creatorcontrib>Olazabal-Loumé, M</creatorcontrib><creatorcontrib>Feugeas, J.L</creatorcontrib><creatorcontrib>Ribeyre, X</creatorcontrib><creatorcontrib>Schiavi, A</creatorcontrib><creatorcontrib>Schurtz, G</creatorcontrib><creatorcontrib>Breil, J</creatorcontrib><creatorcontrib>Nicolaï, Ph</creatorcontrib><title>Studies on targets for inertial fusion ignition demonstration at the HiPER facility</title><title>Nuclear fusion</title><description>Recently, a European collaboration has proposed the High Power Laser Energy Research (HiPER) facility, with the primary goal of demonstrating laser driven inertial fusion fast ignition. HiPER is expected to provide 250 kJ in multiple, 3omega (wavelength lambda = 0.35 mum), nanosecond beams for compression and 70 kJ in 10-20 ps, 2omega beams for ignition. The baseline approach is fast ignition by laser-accelerated fast electrons; cones are considered as a means to maximize ignition laser-fuel coupling. Earlier studies led to the identification of an all-DT shell, with a total mass of about 0.6 mg as a reference target concept. The HiPER main pulse can compress the fuel to a peak density above 500 g cm-3 and an areal density rhoR of about 1.5 g cm-2. Ignition of the compressed fuel requires that relativistic electrons deposit about 20 kJ in a volume of radius of about 15 mum and a depth of less than 1.2 g cm-2. The ignited target releases about 13 MJ. In this paper, additional analyses of this target are reported. An optimal irradiation pattern has been identified. The effects on fuel compression of the low-mode irradiation non-uniformities have been studied by 2D simulations and an analytical model. The scaling of the electron beam energy required for ignition (versus electron kinetic energy) has been determined by 2D fluid simulations including a 3D Monte Carlo treatment of relativistic electrons, and agrees with a simple model. Integrated simulations show that beam-induced magnetic fields can reduce beam divergence. As an alternative scheme, shock ignition is studied. 2D simulations have addressed optimization of shock timing and absorbed power, means to increase laser absorption efficiency and the interaction of the igniting shocks with a deformed fuel shell.</description><subject>Exact sciences and technology</subject><subject>Fast ignition of compressed fusion fuels</subject><subject>Laser inertial confinement</subject><subject>Monte carlo methods</subject><subject>Physics</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Physics of plasmas and electric discharges</subject><subject>Plasma simulation</subject><issn>0029-5515</issn><issn>1741-4326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKsfQchFvLhu_u4mRynVCgXF6jnEbFIj2901SQ_99u66pRfF08zwfjPzeABcYnSLkRA5QkRmnGOeM5nzHHGOkDgCE1wynDFKimMwOTCn4CzGT4Qww5ROwGqVtpW3EbYNTDqsbYrQtQH6xobkdQ3dNvpe8-vGp6Gp7KZtYgr6Z9IJpg8LF_55_gKdNr72aXcOTpyuo73Y1yl4u5-_zhbZ8unhcXa3zAyVNGWUlu_UFNoawQpJKJaCImYsk1ITxAphCykI0o4xTSvJKyaxYdJa0kMldXQKrse7XWi_tjYmtfHR2LrWjW23UZWMMsGIpD3JR9KENsZgneqC3-iwUxipIUM15KOGfBTrqxoz7Peu9h90NLp2QTfGx8Mywb0lUpCeuxk533YH9c-TqqsG4-g3_r-Tb9j5jJ8</recordid><startdate>20090501</startdate><enddate>20090501</enddate><creator>Atzeni, S</creator><creator>Davies, J.R</creator><creator>Hallo, L</creator><creator>Honrubia, J.J</creator><creator>Maire, P.H</creator><creator>Olazabal-Loumé, M</creator><creator>Feugeas, J.L</creator><creator>Ribeyre, X</creator><creator>Schiavi, A</creator><creator>Schurtz, G</creator><creator>Breil, J</creator><creator>Nicolaï, Ph</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20090501</creationdate><title>Studies on targets for inertial fusion ignition demonstration at the HiPER facility</title><author>Atzeni, S ; Davies, J.R ; Hallo, L ; Honrubia, J.J ; Maire, P.H ; Olazabal-Loumé, M ; Feugeas, J.L ; Ribeyre, X ; Schiavi, A ; Schurtz, G ; Breil, J ; Nicolaï, Ph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-337b3c6aec846923198304ce499a20468e69820af44a3d95d491c49ee24ce73f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Exact sciences and technology</topic><topic>Fast ignition of compressed fusion fuels</topic><topic>Laser inertial confinement</topic><topic>Monte carlo methods</topic><topic>Physics</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Physics of plasmas and electric discharges</topic><topic>Plasma simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Atzeni, S</creatorcontrib><creatorcontrib>Davies, J.R</creatorcontrib><creatorcontrib>Hallo, L</creatorcontrib><creatorcontrib>Honrubia, J.J</creatorcontrib><creatorcontrib>Maire, P.H</creatorcontrib><creatorcontrib>Olazabal-Loumé, M</creatorcontrib><creatorcontrib>Feugeas, J.L</creatorcontrib><creatorcontrib>Ribeyre, X</creatorcontrib><creatorcontrib>Schiavi, A</creatorcontrib><creatorcontrib>Schurtz, G</creatorcontrib><creatorcontrib>Breil, J</creatorcontrib><creatorcontrib>Nicolaï, Ph</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nuclear fusion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Atzeni, S</au><au>Davies, J.R</au><au>Hallo, L</au><au>Honrubia, J.J</au><au>Maire, P.H</au><au>Olazabal-Loumé, M</au><au>Feugeas, J.L</au><au>Ribeyre, X</au><au>Schiavi, A</au><au>Schurtz, G</au><au>Breil, J</au><au>Nicolaï, Ph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Studies on targets for inertial fusion ignition demonstration at the HiPER facility</atitle><jtitle>Nuclear fusion</jtitle><date>2009-05-01</date><risdate>2009</risdate><volume>49</volume><issue>5</issue><spage>055008</spage><epage>055008 (7)</epage><pages>055008-055008 (7)</pages><issn>0029-5515</issn><eissn>1741-4326</eissn><coden>NUFUAU</coden><abstract>Recently, a European collaboration has proposed the High Power Laser Energy Research (HiPER) facility, with the primary goal of demonstrating laser driven inertial fusion fast ignition. HiPER is expected to provide 250 kJ in multiple, 3omega (wavelength lambda = 0.35 mum), nanosecond beams for compression and 70 kJ in 10-20 ps, 2omega beams for ignition. The baseline approach is fast ignition by laser-accelerated fast electrons; cones are considered as a means to maximize ignition laser-fuel coupling. Earlier studies led to the identification of an all-DT shell, with a total mass of about 0.6 mg as a reference target concept. The HiPER main pulse can compress the fuel to a peak density above 500 g cm-3 and an areal density rhoR of about 1.5 g cm-2. Ignition of the compressed fuel requires that relativistic electrons deposit about 20 kJ in a volume of radius of about 15 mum and a depth of less than 1.2 g cm-2. The ignited target releases about 13 MJ. In this paper, additional analyses of this target are reported. An optimal irradiation pattern has been identified. The effects on fuel compression of the low-mode irradiation non-uniformities have been studied by 2D simulations and an analytical model. The scaling of the electron beam energy required for ignition (versus electron kinetic energy) has been determined by 2D fluid simulations including a 3D Monte Carlo treatment of relativistic electrons, and agrees with a simple model. Integrated simulations show that beam-induced magnetic fields can reduce beam divergence. As an alternative scheme, shock ignition is studied. 2D simulations have addressed optimization of shock timing and absorbed power, means to increase laser absorption efficiency and the interaction of the igniting shocks with a deformed fuel shell.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/0029-5515/49/5/055008</doi></addata></record>
fulltext fulltext
identifier ISSN: 0029-5515
ispartof Nuclear fusion, 2009-05, Vol.49 (5), p.055008-055008 (7)
issn 0029-5515
1741-4326
language eng
recordid cdi_proquest_miscellaneous_743484293
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Exact sciences and technology
Fast ignition of compressed fusion fuels
Laser inertial confinement
Monte carlo methods
Physics
Physics of gases, plasmas and electric discharges
Physics of plasmas and electric discharges
Plasma simulation
title Studies on targets for inertial fusion ignition demonstration at the HiPER facility
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A41%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Studies%20on%20targets%20for%20inertial%20fusion%20ignition%20demonstration%20at%20the%20HiPER%20facility&rft.jtitle=Nuclear%20fusion&rft.au=Atzeni,%20S&rft.date=2009-05-01&rft.volume=49&rft.issue=5&rft.spage=055008&rft.epage=055008%20(7)&rft.pages=055008-055008%20(7)&rft.issn=0029-5515&rft.eissn=1741-4326&rft.coden=NUFUAU&rft_id=info:doi/10.1088/0029-5515/49/5/055008&rft_dat=%3Cproquest_iop_p%3E743484293%3C/proquest_iop_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=743484293&rft_id=info:pmid/&rfr_iscdi=true