Structural Evidence for Induced Fit as a Mechanism for Antibody-Antigen Recognition

The three-dimensional structure of a specific antibody (Fab 17/9) to a peptide immunogen from influenza virus hemagglutinin [HA1(75-110)] and two independent crystal complexes of this antibody with bound peptide (Tyr$^{P100}$-Leu$^{P108}$) have been determined by x-ray crystallographic techniques at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 1992-02, Vol.255 (5047), p.959-965
Hauptverfasser: Rini, James M., Schulze-Gahmen, Ursula, Wilson, Ian A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 965
container_issue 5047
container_start_page 959
container_title Science (American Association for the Advancement of Science)
container_volume 255
creator Rini, James M.
Schulze-Gahmen, Ursula
Wilson, Ian A.
description The three-dimensional structure of a specific antibody (Fab 17/9) to a peptide immunogen from influenza virus hemagglutinin [HA1(75-110)] and two independent crystal complexes of this antibody with bound peptide (Tyr$^{P100}$-Leu$^{P108}$) have been determined by x-ray crystallographic techniques at 2.0 $\angst $, 2.9 $\angst $, and 3.1 $\angst $ resolution, respectively. The nonapeptide antigen assumes a type I β turn in the antibody combining site and interacts primarily with the Fab hypervariable loops L3, H2, and H3. Comparison of the bound and unbound Fab structures shows that a major rearrangement in the H3 loop accompanies antigen binding. This conformational change results in the creation of a binding pocket for the β turn of the peptide, allowing Tyr$^{P105}$ to be accommodated. The conformation of the peptide bound to the antibody shows similarity to its cognate sequence in the HA1, suggesting a possible mechanism for the cross-reactivity of this Fab with monomeric hemagglutinin. The structures of the free and antigen bound antibodies demonstrate the flexibility of the antibody combining site and provide an example of induced fit as a mechanism for antibody-antigen recognition.
doi_str_mv 10.1126/science.1546293
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_743482426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A11968740</galeid><jstor_id>2876584</jstor_id><sourcerecordid>A11968740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c772t-7e97fbd845a6e4f66fde7fa28cebf1263127c6fd80a08a2e22c726f07051c7893</originalsourceid><addsrcrecordid>eNqN0s9v0zAUB3ALgUZXOHMBKZoQcFg22_lh51iqrVQqVKLA1XKd5-IqtYedTOy_x6VRUVEFlQ-x3veTp9h5CL0g-IoQWl4HZcAquCJFXtIqe4QGBFdFWlGcPUYDjLMy5ZgVT9F5CGuMY1ZlZ-is5wO0WLS-U23nZZPc3Jt62yzRzidTW3cK6uTWtIkMiUw-gvourQmb3_HItmbp6od0u1mBTT6DcitrWuPsM_REyybA8_45RF9vb76MP6Sz-WQ6Hs1SxRhtUwYV08ua54UsIddlqWtgWlKuYKnj2TJCmYpFjiXmkgKlitFSY4YLohivsiF6u-t7592PDkIrNiYoaBppwXVBsDzLOc1jpyF6829J41dQRv8LSUlxxDjCi7_g2nXexuMKSrKiIJRnEV3u0Eo2IIzVrvVSxduCeN3OgjaxPCKkKjnLtz3TIzyuGjZGHfPvDnwkLfxsV7ILQUwXn06m828n0_eTUymfzA7o5TGqXNPACkSci_H8gF_vuPIuBA9a3Hmzkf5BECy2gy_6wRf9JMc3XvU_pFtuoP7j9_nrPpdByUZ7aZUJe1ZQXFUliezljq1D6_w-ppyVBc-zX9R-D0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213551283</pqid></control><display><type>article</type><title>Structural Evidence for Induced Fit as a Mechanism for Antibody-Antigen Recognition</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><source>MEDLINE</source><creator>Rini, James M. ; Schulze-Gahmen, Ursula ; Wilson, Ian A.</creator><creatorcontrib>Rini, James M. ; Schulze-Gahmen, Ursula ; Wilson, Ian A.</creatorcontrib><description>The three-dimensional structure of a specific antibody (Fab 17/9) to a peptide immunogen from influenza virus hemagglutinin [HA1(75-110)] and two independent crystal complexes of this antibody with bound peptide (Tyr$^{P100}$-Leu$^{P108}$) have been determined by x-ray crystallographic techniques at 2.0 $\angst $, 2.9 $\angst $, and 3.1 $\angst $ resolution, respectively. The nonapeptide antigen assumes a type I β turn in the antibody combining site and interacts primarily with the Fab hypervariable loops L3, H2, and H3. Comparison of the bound and unbound Fab structures shows that a major rearrangement in the H3 loop accompanies antigen binding. This conformational change results in the creation of a binding pocket for the β turn of the peptide, allowing Tyr$^{P105}$ to be accommodated. The conformation of the peptide bound to the antibody shows similarity to its cognate sequence in the HA1, suggesting a possible mechanism for the cross-reactivity of this Fab with monomeric hemagglutinin. The structures of the free and antigen bound antibodies demonstrate the flexibility of the antibody combining site and provide an example of induced fit as a mechanism for antibody-antigen recognition.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1546293</identifier><identifier>PMID: 1546293</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Society for the Advancement of Science</publisher><subject>Amino Acid Sequence ; Animals ; Antibodies ; Antibodies, immunoglobulins ; Antibodies, Monoclonal - ultrastructure ; Antigen-Antibody Reactions ; Antigens ; Atoms ; Binding sites ; Biological and medical sciences ; Biology ; Conformity ; Crystals ; Electron density ; Energy ; Fundamental and applied biological sciences. Psychology ; Fundamental immunology ; Hemagglutinins, Viral - immunology ; Hydrogen Bonding ; Hydrogen bonds ; Immune recognition ; Immunity (Disease) ; Immunoglobulin Fab Fragments - ultrastructure ; Immunoglobulin G - ultrastructure ; In Vitro Techniques ; Influenza A virus - immunology ; influenza virus ; Kinetics ; Mice ; Models, Molecular ; Molecular immunology ; Molecular Sequence Data ; Molecular structure ; Molecules ; Motion ; Peptides - chemistry ; Peptides - immunology ; Personality ; Protein Binding ; Protein Conformation ; Protein structure ; Proteins ; Research Article ; Structure ; Surface areas ; Thermodynamics ; Transcripts (Written Records) ; X-ray crystallography ; X-Ray Diffraction</subject><ispartof>Science (American Association for the Advancement of Science), 1992-02, Vol.255 (5047), p.959-965</ispartof><rights>Copyright 1992 American Association for the Advancement of Science</rights><rights>1992 INIST-CNRS</rights><rights>COPYRIGHT 1992 American Association for the Advancement of Science</rights><rights>COPYRIGHT 1992 American Association for the Advancement of Science</rights><rights>Copyright American Association for the Advancement of Science Feb 21, 1992</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c772t-7e97fbd845a6e4f66fde7fa28cebf1263127c6fd80a08a2e22c726f07051c7893</citedby><cites>FETCH-LOGICAL-c772t-7e97fbd845a6e4f66fde7fa28cebf1263127c6fd80a08a2e22c726f07051c7893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2876584$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2876584$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,2871,2872,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=5209961$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/1546293$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rini, James M.</creatorcontrib><creatorcontrib>Schulze-Gahmen, Ursula</creatorcontrib><creatorcontrib>Wilson, Ian A.</creatorcontrib><title>Structural Evidence for Induced Fit as a Mechanism for Antibody-Antigen Recognition</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>The three-dimensional structure of a specific antibody (Fab 17/9) to a peptide immunogen from influenza virus hemagglutinin [HA1(75-110)] and two independent crystal complexes of this antibody with bound peptide (Tyr$^{P100}$-Leu$^{P108}$) have been determined by x-ray crystallographic techniques at 2.0 $\angst $, 2.9 $\angst $, and 3.1 $\angst $ resolution, respectively. The nonapeptide antigen assumes a type I β turn in the antibody combining site and interacts primarily with the Fab hypervariable loops L3, H2, and H3. Comparison of the bound and unbound Fab structures shows that a major rearrangement in the H3 loop accompanies antigen binding. This conformational change results in the creation of a binding pocket for the β turn of the peptide, allowing Tyr$^{P105}$ to be accommodated. The conformation of the peptide bound to the antibody shows similarity to its cognate sequence in the HA1, suggesting a possible mechanism for the cross-reactivity of this Fab with monomeric hemagglutinin. The structures of the free and antigen bound antibodies demonstrate the flexibility of the antibody combining site and provide an example of induced fit as a mechanism for antibody-antigen recognition.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Antibodies, immunoglobulins</subject><subject>Antibodies, Monoclonal - ultrastructure</subject><subject>Antigen-Antibody Reactions</subject><subject>Antigens</subject><subject>Atoms</subject><subject>Binding sites</subject><subject>Biological and medical sciences</subject><subject>Biology</subject><subject>Conformity</subject><subject>Crystals</subject><subject>Electron density</subject><subject>Energy</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Fundamental immunology</subject><subject>Hemagglutinins, Viral - immunology</subject><subject>Hydrogen Bonding</subject><subject>Hydrogen bonds</subject><subject>Immune recognition</subject><subject>Immunity (Disease)</subject><subject>Immunoglobulin Fab Fragments - ultrastructure</subject><subject>Immunoglobulin G - ultrastructure</subject><subject>In Vitro Techniques</subject><subject>Influenza A virus - immunology</subject><subject>influenza virus</subject><subject>Kinetics</subject><subject>Mice</subject><subject>Models, Molecular</subject><subject>Molecular immunology</subject><subject>Molecular Sequence Data</subject><subject>Molecular structure</subject><subject>Molecules</subject><subject>Motion</subject><subject>Peptides - chemistry</subject><subject>Peptides - immunology</subject><subject>Personality</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein structure</subject><subject>Proteins</subject><subject>Research Article</subject><subject>Structure</subject><subject>Surface areas</subject><subject>Thermodynamics</subject><subject>Transcripts (Written Records)</subject><subject>X-ray crystallography</subject><subject>X-Ray Diffraction</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqN0s9v0zAUB3ALgUZXOHMBKZoQcFg22_lh51iqrVQqVKLA1XKd5-IqtYedTOy_x6VRUVEFlQ-x3veTp9h5CL0g-IoQWl4HZcAquCJFXtIqe4QGBFdFWlGcPUYDjLMy5ZgVT9F5CGuMY1ZlZ-is5wO0WLS-U23nZZPc3Jt62yzRzidTW3cK6uTWtIkMiUw-gvourQmb3_HItmbp6od0u1mBTT6DcitrWuPsM_REyybA8_45RF9vb76MP6Sz-WQ6Hs1SxRhtUwYV08ua54UsIddlqWtgWlKuYKnj2TJCmYpFjiXmkgKlitFSY4YLohivsiF6u-t7592PDkIrNiYoaBppwXVBsDzLOc1jpyF6829J41dQRv8LSUlxxDjCi7_g2nXexuMKSrKiIJRnEV3u0Eo2IIzVrvVSxduCeN3OgjaxPCKkKjnLtz3TIzyuGjZGHfPvDnwkLfxsV7ILQUwXn06m828n0_eTUymfzA7o5TGqXNPACkSci_H8gF_vuPIuBA9a3Hmzkf5BECy2gy_6wRf9JMc3XvU_pFtuoP7j9_nrPpdByUZ7aZUJe1ZQXFUliezljq1D6_w-ppyVBc-zX9R-D0A</recordid><startdate>19920221</startdate><enddate>19920221</enddate><creator>Rini, James M.</creator><creator>Schulze-Gahmen, Ursula</creator><creator>Wilson, Ian A.</creator><general>American Society for the Advancement of Science</general><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8GL</scope><scope>IBG</scope><scope>IOV</scope><scope>ISN</scope><scope>0-V</scope><scope>3V.</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88B</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9-</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0K</scope><scope>M0P</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>7T5</scope><scope>7X8</scope></search><sort><creationdate>19920221</creationdate><title>Structural Evidence for Induced Fit as a Mechanism for Antibody-Antigen Recognition</title><author>Rini, James M. ; Schulze-Gahmen, Ursula ; Wilson, Ian A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c772t-7e97fbd845a6e4f66fde7fa28cebf1263127c6fd80a08a2e22c726f07051c7893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Antibodies, immunoglobulins</topic><topic>Antibodies, Monoclonal - ultrastructure</topic><topic>Antigen-Antibody Reactions</topic><topic>Antigens</topic><topic>Atoms</topic><topic>Binding sites</topic><topic>Biological and medical sciences</topic><topic>Biology</topic><topic>Conformity</topic><topic>Crystals</topic><topic>Electron density</topic><topic>Energy</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Fundamental immunology</topic><topic>Hemagglutinins, Viral - immunology</topic><topic>Hydrogen Bonding</topic><topic>Hydrogen bonds</topic><topic>Immune recognition</topic><topic>Immunity (Disease)</topic><topic>Immunoglobulin Fab Fragments - ultrastructure</topic><topic>Immunoglobulin G - ultrastructure</topic><topic>In Vitro Techniques</topic><topic>Influenza A virus - immunology</topic><topic>influenza virus</topic><topic>Kinetics</topic><topic>Mice</topic><topic>Models, Molecular</topic><topic>Molecular immunology</topic><topic>Molecular Sequence Data</topic><topic>Molecular structure</topic><topic>Molecules</topic><topic>Motion</topic><topic>Peptides - chemistry</topic><topic>Peptides - immunology</topic><topic>Personality</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein structure</topic><topic>Proteins</topic><topic>Research Article</topic><topic>Structure</topic><topic>Surface areas</topic><topic>Thermodynamics</topic><topic>Transcripts (Written Records)</topic><topic>X-ray crystallography</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rini, James M.</creatorcontrib><creatorcontrib>Schulze-Gahmen, Ursula</creatorcontrib><creatorcontrib>Wilson, Ian A.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: High School</collection><collection>Gale In Context: Biography</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Education Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Agricultural Science Database</collection><collection>Education Database (ProQuest)</collection><collection>Consumer Health Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>Immunology Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rini, James M.</au><au>Schulze-Gahmen, Ursula</au><au>Wilson, Ian A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Evidence for Induced Fit as a Mechanism for Antibody-Antigen Recognition</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>1992-02-21</date><risdate>1992</risdate><volume>255</volume><issue>5047</issue><spage>959</spage><epage>965</epage><pages>959-965</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>The three-dimensional structure of a specific antibody (Fab 17/9) to a peptide immunogen from influenza virus hemagglutinin [HA1(75-110)] and two independent crystal complexes of this antibody with bound peptide (Tyr$^{P100}$-Leu$^{P108}$) have been determined by x-ray crystallographic techniques at 2.0 $\angst $, 2.9 $\angst $, and 3.1 $\angst $ resolution, respectively. The nonapeptide antigen assumes a type I β turn in the antibody combining site and interacts primarily with the Fab hypervariable loops L3, H2, and H3. Comparison of the bound and unbound Fab structures shows that a major rearrangement in the H3 loop accompanies antigen binding. This conformational change results in the creation of a binding pocket for the β turn of the peptide, allowing Tyr$^{P105}$ to be accommodated. The conformation of the peptide bound to the antibody shows similarity to its cognate sequence in the HA1, suggesting a possible mechanism for the cross-reactivity of this Fab with monomeric hemagglutinin. The structures of the free and antigen bound antibodies demonstrate the flexibility of the antibody combining site and provide an example of induced fit as a mechanism for antibody-antigen recognition.</abstract><cop>Washington, DC</cop><pub>American Society for the Advancement of Science</pub><pmid>1546293</pmid><doi>10.1126/science.1546293</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 1992-02, Vol.255 (5047), p.959-965
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_743482426
source American Association for the Advancement of Science; Jstor Complete Legacy; MEDLINE
subjects Amino Acid Sequence
Animals
Antibodies
Antibodies, immunoglobulins
Antibodies, Monoclonal - ultrastructure
Antigen-Antibody Reactions
Antigens
Atoms
Binding sites
Biological and medical sciences
Biology
Conformity
Crystals
Electron density
Energy
Fundamental and applied biological sciences. Psychology
Fundamental immunology
Hemagglutinins, Viral - immunology
Hydrogen Bonding
Hydrogen bonds
Immune recognition
Immunity (Disease)
Immunoglobulin Fab Fragments - ultrastructure
Immunoglobulin G - ultrastructure
In Vitro Techniques
Influenza A virus - immunology
influenza virus
Kinetics
Mice
Models, Molecular
Molecular immunology
Molecular Sequence Data
Molecular structure
Molecules
Motion
Peptides - chemistry
Peptides - immunology
Personality
Protein Binding
Protein Conformation
Protein structure
Proteins
Research Article
Structure
Surface areas
Thermodynamics
Transcripts (Written Records)
X-ray crystallography
X-Ray Diffraction
title Structural Evidence for Induced Fit as a Mechanism for Antibody-Antigen Recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T13%3A30%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Evidence%20for%20Induced%20Fit%20as%20a%20Mechanism%20for%20Antibody-Antigen%20Recognition&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Rini,%20James%20M.&rft.date=1992-02-21&rft.volume=255&rft.issue=5047&rft.spage=959&rft.epage=965&rft.pages=959-965&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1546293&rft_dat=%3Cgale_proqu%3EA11968740%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213551283&rft_id=info:pmid/1546293&rft_galeid=A11968740&rft_jstor_id=2876584&rfr_iscdi=true