A study on the effect of morphological filters on computer-aided medical image diagnosis

We have developed several morphological image filters that can be useful for computer-aided medical image diagnosis. Several computer-aided diagnosis (CAD) systems for lung cancer and breast cancer have been developed to assist the radiologist’s diagnostic work. The CAD systems for lung cancer can a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Artificial life and robotics 2009-11, Vol.14 (2), p.191-194
Hauptverfasser: Homma, Noriyasu, Kawai, Yuko, Shimoyama, Satoshi, Ishibashi, Tadashi, Yoshizawa, Makoto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 194
container_issue 2
container_start_page 191
container_title Artificial life and robotics
container_volume 14
creator Homma, Noriyasu
Kawai, Yuko
Shimoyama, Satoshi
Ishibashi, Tadashi
Yoshizawa, Makoto
description We have developed several morphological image filters that can be useful for computer-aided medical image diagnosis. Several computer-aided diagnosis (CAD) systems for lung cancer and breast cancer have been developed to assist the radiologist’s diagnostic work. The CAD systems for lung cancer can automatically detect pathological changes (pulmonary nodules) with a high true-positive rate (TP) even under low false-positive rate (FP) conditions. On the other hand, the conventional CAD systems for breast cancer can automatically detect some pathological changes (calcifications and masses), but the TP for other changes, such as architectural distortion, is still very low. Motivated by the radiologist’s cognitive processes to increase TP for breast cancer, we propose new methods to extract novel morphological features from X-ray mammography. Simulation results demonstrate the effectiveness of the morphological methods for detecting tumor shadows.
doi_str_mv 10.1007/s10015-009-0651-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743479893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743479893</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-f9b9745322fad0c6d3c3845e7b97aab01f8f7bb540b615259ad46f39d39c69463</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EEqXwAGzemAx2fEk8VhVQpEosILFZji9pqiQOdjL07XEJM8u56fuPzvkBuCf4kWBcPqUcCUcYS4QFJ6i6ACsiCEMl4-Iy14xSxAtZXYOblI4YsxILugJfG5im2Z5gGOB0cNB578wEg4d9iOMhdKFpje6gb7vJxXTGTOjHOTdIt9ZZ2Dv7S7S9bhy0rW6GkNp0C6687pK7-8tr8Pny_LHdof3769t2s0eGFnhCXtYyn0iLwmuLjbDU0IpxV-ax1jUmvvJlXXOGa0F4waW2THgqLZVGSCboGjwse8cYvmeXJtW3ybiu04MLc1Ilo6yUlaSZJAtpYkgpOq_GmI-OJ0WwOpuoFhNVNlGdTVRV1hSLJmV2aFxUxzDHIT_0j-gH8tp02A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>743479893</pqid></control><display><type>article</type><title>A study on the effect of morphological filters on computer-aided medical image diagnosis</title><source>SpringerLink Journals - AutoHoldings</source><creator>Homma, Noriyasu ; Kawai, Yuko ; Shimoyama, Satoshi ; Ishibashi, Tadashi ; Yoshizawa, Makoto</creator><creatorcontrib>Homma, Noriyasu ; Kawai, Yuko ; Shimoyama, Satoshi ; Ishibashi, Tadashi ; Yoshizawa, Makoto</creatorcontrib><description>We have developed several morphological image filters that can be useful for computer-aided medical image diagnosis. Several computer-aided diagnosis (CAD) systems for lung cancer and breast cancer have been developed to assist the radiologist’s diagnostic work. The CAD systems for lung cancer can automatically detect pathological changes (pulmonary nodules) with a high true-positive rate (TP) even under low false-positive rate (FP) conditions. On the other hand, the conventional CAD systems for breast cancer can automatically detect some pathological changes (calcifications and masses), but the TP for other changes, such as architectural distortion, is still very low. Motivated by the radiologist’s cognitive processes to increase TP for breast cancer, we propose new methods to extract novel morphological features from X-ray mammography. Simulation results demonstrate the effectiveness of the morphological methods for detecting tumor shadows.</description><identifier>ISSN: 1433-5298</identifier><identifier>EISSN: 1614-7456</identifier><identifier>DOI: 10.1007/s10015-009-0651-8</identifier><language>eng</language><publisher>Japan: Springer Japan</publisher><subject>Artificial Intelligence ; Computation by Abstract Devices ; Computer Science ; Control ; Mechatronics ; Original Article ; Robotics</subject><ispartof>Artificial life and robotics, 2009-11, Vol.14 (2), p.191-194</ispartof><rights>International Symposium on Artificial Life and Robotics (ISAROB). 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-f9b9745322fad0c6d3c3845e7b97aab01f8f7bb540b615259ad46f39d39c69463</citedby><cites>FETCH-LOGICAL-c320t-f9b9745322fad0c6d3c3845e7b97aab01f8f7bb540b615259ad46f39d39c69463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10015-009-0651-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10015-009-0651-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Homma, Noriyasu</creatorcontrib><creatorcontrib>Kawai, Yuko</creatorcontrib><creatorcontrib>Shimoyama, Satoshi</creatorcontrib><creatorcontrib>Ishibashi, Tadashi</creatorcontrib><creatorcontrib>Yoshizawa, Makoto</creatorcontrib><title>A study on the effect of morphological filters on computer-aided medical image diagnosis</title><title>Artificial life and robotics</title><addtitle>Artif Life Robotics</addtitle><description>We have developed several morphological image filters that can be useful for computer-aided medical image diagnosis. Several computer-aided diagnosis (CAD) systems for lung cancer and breast cancer have been developed to assist the radiologist’s diagnostic work. The CAD systems for lung cancer can automatically detect pathological changes (pulmonary nodules) with a high true-positive rate (TP) even under low false-positive rate (FP) conditions. On the other hand, the conventional CAD systems for breast cancer can automatically detect some pathological changes (calcifications and masses), but the TP for other changes, such as architectural distortion, is still very low. Motivated by the radiologist’s cognitive processes to increase TP for breast cancer, we propose new methods to extract novel morphological features from X-ray mammography. Simulation results demonstrate the effectiveness of the morphological methods for detecting tumor shadows.</description><subject>Artificial Intelligence</subject><subject>Computation by Abstract Devices</subject><subject>Computer Science</subject><subject>Control</subject><subject>Mechatronics</subject><subject>Original Article</subject><subject>Robotics</subject><issn>1433-5298</issn><issn>1614-7456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOwzAUhi0EEqXwAGzemAx2fEk8VhVQpEosILFZji9pqiQOdjL07XEJM8u56fuPzvkBuCf4kWBcPqUcCUcYS4QFJ6i6ACsiCEMl4-Iy14xSxAtZXYOblI4YsxILugJfG5im2Z5gGOB0cNB578wEg4d9iOMhdKFpje6gb7vJxXTGTOjHOTdIt9ZZ2Dv7S7S9bhy0rW6GkNp0C6687pK7-8tr8Pny_LHdof3769t2s0eGFnhCXtYyn0iLwmuLjbDU0IpxV-ax1jUmvvJlXXOGa0F4waW2THgqLZVGSCboGjwse8cYvmeXJtW3ybiu04MLc1Ilo6yUlaSZJAtpYkgpOq_GmI-OJ0WwOpuoFhNVNlGdTVRV1hSLJmV2aFxUxzDHIT_0j-gH8tp02A</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Homma, Noriyasu</creator><creator>Kawai, Yuko</creator><creator>Shimoyama, Satoshi</creator><creator>Ishibashi, Tadashi</creator><creator>Yoshizawa, Makoto</creator><general>Springer Japan</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20091101</creationdate><title>A study on the effect of morphological filters on computer-aided medical image diagnosis</title><author>Homma, Noriyasu ; Kawai, Yuko ; Shimoyama, Satoshi ; Ishibashi, Tadashi ; Yoshizawa, Makoto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-f9b9745322fad0c6d3c3845e7b97aab01f8f7bb540b615259ad46f39d39c69463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Artificial Intelligence</topic><topic>Computation by Abstract Devices</topic><topic>Computer Science</topic><topic>Control</topic><topic>Mechatronics</topic><topic>Original Article</topic><topic>Robotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Homma, Noriyasu</creatorcontrib><creatorcontrib>Kawai, Yuko</creatorcontrib><creatorcontrib>Shimoyama, Satoshi</creatorcontrib><creatorcontrib>Ishibashi, Tadashi</creatorcontrib><creatorcontrib>Yoshizawa, Makoto</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Artificial life and robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Homma, Noriyasu</au><au>Kawai, Yuko</au><au>Shimoyama, Satoshi</au><au>Ishibashi, Tadashi</au><au>Yoshizawa, Makoto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A study on the effect of morphological filters on computer-aided medical image diagnosis</atitle><jtitle>Artificial life and robotics</jtitle><stitle>Artif Life Robotics</stitle><date>2009-11-01</date><risdate>2009</risdate><volume>14</volume><issue>2</issue><spage>191</spage><epage>194</epage><pages>191-194</pages><issn>1433-5298</issn><eissn>1614-7456</eissn><abstract>We have developed several morphological image filters that can be useful for computer-aided medical image diagnosis. Several computer-aided diagnosis (CAD) systems for lung cancer and breast cancer have been developed to assist the radiologist’s diagnostic work. The CAD systems for lung cancer can automatically detect pathological changes (pulmonary nodules) with a high true-positive rate (TP) even under low false-positive rate (FP) conditions. On the other hand, the conventional CAD systems for breast cancer can automatically detect some pathological changes (calcifications and masses), but the TP for other changes, such as architectural distortion, is still very low. Motivated by the radiologist’s cognitive processes to increase TP for breast cancer, we propose new methods to extract novel morphological features from X-ray mammography. Simulation results demonstrate the effectiveness of the morphological methods for detecting tumor shadows.</abstract><cop>Japan</cop><pub>Springer Japan</pub><doi>10.1007/s10015-009-0651-8</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1433-5298
ispartof Artificial life and robotics, 2009-11, Vol.14 (2), p.191-194
issn 1433-5298
1614-7456
language eng
recordid cdi_proquest_miscellaneous_743479893
source SpringerLink Journals - AutoHoldings
subjects Artificial Intelligence
Computation by Abstract Devices
Computer Science
Control
Mechatronics
Original Article
Robotics
title A study on the effect of morphological filters on computer-aided medical image diagnosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A03%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20study%20on%20the%20effect%20of%20morphological%20filters%20on%20computer-aided%20medical%20image%20diagnosis&rft.jtitle=Artificial%20life%20and%20robotics&rft.au=Homma,%20Noriyasu&rft.date=2009-11-01&rft.volume=14&rft.issue=2&rft.spage=191&rft.epage=194&rft.pages=191-194&rft.issn=1433-5298&rft.eissn=1614-7456&rft_id=info:doi/10.1007/s10015-009-0651-8&rft_dat=%3Cproquest_cross%3E743479893%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=743479893&rft_id=info:pmid/&rfr_iscdi=true