A study on the effect of morphological filters on computer-aided medical image diagnosis
We have developed several morphological image filters that can be useful for computer-aided medical image diagnosis. Several computer-aided diagnosis (CAD) systems for lung cancer and breast cancer have been developed to assist the radiologist’s diagnostic work. The CAD systems for lung cancer can a...
Gespeichert in:
Veröffentlicht in: | Artificial life and robotics 2009-11, Vol.14 (2), p.191-194 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 194 |
---|---|
container_issue | 2 |
container_start_page | 191 |
container_title | Artificial life and robotics |
container_volume | 14 |
creator | Homma, Noriyasu Kawai, Yuko Shimoyama, Satoshi Ishibashi, Tadashi Yoshizawa, Makoto |
description | We have developed several morphological image filters that can be useful for computer-aided medical image diagnosis. Several computer-aided diagnosis (CAD) systems for lung cancer and breast cancer have been developed to assist the radiologist’s diagnostic work. The CAD systems for lung cancer can automatically detect pathological changes (pulmonary nodules) with a high true-positive rate (TP) even under low false-positive rate (FP) conditions. On the other hand, the conventional CAD systems for breast cancer can automatically detect some pathological changes (calcifications and masses), but the TP for other changes, such as architectural distortion, is still very low. Motivated by the radiologist’s cognitive processes to increase TP for breast cancer, we propose new methods to extract novel morphological features from X-ray mammography. Simulation results demonstrate the effectiveness of the morphological methods for detecting tumor shadows. |
doi_str_mv | 10.1007/s10015-009-0651-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743479893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743479893</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-f9b9745322fad0c6d3c3845e7b97aab01f8f7bb540b615259ad46f39d39c69463</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EEqXwAGzemAx2fEk8VhVQpEosILFZji9pqiQOdjL07XEJM8u56fuPzvkBuCf4kWBcPqUcCUcYS4QFJ6i6ACsiCEMl4-Iy14xSxAtZXYOblI4YsxILugJfG5im2Z5gGOB0cNB578wEg4d9iOMhdKFpje6gb7vJxXTGTOjHOTdIt9ZZ2Dv7S7S9bhy0rW6GkNp0C6687pK7-8tr8Pny_LHdof3769t2s0eGFnhCXtYyn0iLwmuLjbDU0IpxV-ax1jUmvvJlXXOGa0F4waW2THgqLZVGSCboGjwse8cYvmeXJtW3ybiu04MLc1Ilo6yUlaSZJAtpYkgpOq_GmI-OJ0WwOpuoFhNVNlGdTVRV1hSLJmV2aFxUxzDHIT_0j-gH8tp02A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>743479893</pqid></control><display><type>article</type><title>A study on the effect of morphological filters on computer-aided medical image diagnosis</title><source>SpringerLink Journals - AutoHoldings</source><creator>Homma, Noriyasu ; Kawai, Yuko ; Shimoyama, Satoshi ; Ishibashi, Tadashi ; Yoshizawa, Makoto</creator><creatorcontrib>Homma, Noriyasu ; Kawai, Yuko ; Shimoyama, Satoshi ; Ishibashi, Tadashi ; Yoshizawa, Makoto</creatorcontrib><description>We have developed several morphological image filters that can be useful for computer-aided medical image diagnosis. Several computer-aided diagnosis (CAD) systems for lung cancer and breast cancer have been developed to assist the radiologist’s diagnostic work. The CAD systems for lung cancer can automatically detect pathological changes (pulmonary nodules) with a high true-positive rate (TP) even under low false-positive rate (FP) conditions. On the other hand, the conventional CAD systems for breast cancer can automatically detect some pathological changes (calcifications and masses), but the TP for other changes, such as architectural distortion, is still very low. Motivated by the radiologist’s cognitive processes to increase TP for breast cancer, we propose new methods to extract novel morphological features from X-ray mammography. Simulation results demonstrate the effectiveness of the morphological methods for detecting tumor shadows.</description><identifier>ISSN: 1433-5298</identifier><identifier>EISSN: 1614-7456</identifier><identifier>DOI: 10.1007/s10015-009-0651-8</identifier><language>eng</language><publisher>Japan: Springer Japan</publisher><subject>Artificial Intelligence ; Computation by Abstract Devices ; Computer Science ; Control ; Mechatronics ; Original Article ; Robotics</subject><ispartof>Artificial life and robotics, 2009-11, Vol.14 (2), p.191-194</ispartof><rights>International Symposium on Artificial Life and Robotics (ISAROB). 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-f9b9745322fad0c6d3c3845e7b97aab01f8f7bb540b615259ad46f39d39c69463</citedby><cites>FETCH-LOGICAL-c320t-f9b9745322fad0c6d3c3845e7b97aab01f8f7bb540b615259ad46f39d39c69463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10015-009-0651-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10015-009-0651-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Homma, Noriyasu</creatorcontrib><creatorcontrib>Kawai, Yuko</creatorcontrib><creatorcontrib>Shimoyama, Satoshi</creatorcontrib><creatorcontrib>Ishibashi, Tadashi</creatorcontrib><creatorcontrib>Yoshizawa, Makoto</creatorcontrib><title>A study on the effect of morphological filters on computer-aided medical image diagnosis</title><title>Artificial life and robotics</title><addtitle>Artif Life Robotics</addtitle><description>We have developed several morphological image filters that can be useful for computer-aided medical image diagnosis. Several computer-aided diagnosis (CAD) systems for lung cancer and breast cancer have been developed to assist the radiologist’s diagnostic work. The CAD systems for lung cancer can automatically detect pathological changes (pulmonary nodules) with a high true-positive rate (TP) even under low false-positive rate (FP) conditions. On the other hand, the conventional CAD systems for breast cancer can automatically detect some pathological changes (calcifications and masses), but the TP for other changes, such as architectural distortion, is still very low. Motivated by the radiologist’s cognitive processes to increase TP for breast cancer, we propose new methods to extract novel morphological features from X-ray mammography. Simulation results demonstrate the effectiveness of the morphological methods for detecting tumor shadows.</description><subject>Artificial Intelligence</subject><subject>Computation by Abstract Devices</subject><subject>Computer Science</subject><subject>Control</subject><subject>Mechatronics</subject><subject>Original Article</subject><subject>Robotics</subject><issn>1433-5298</issn><issn>1614-7456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOwzAUhi0EEqXwAGzemAx2fEk8VhVQpEosILFZji9pqiQOdjL07XEJM8u56fuPzvkBuCf4kWBcPqUcCUcYS4QFJ6i6ACsiCEMl4-Iy14xSxAtZXYOblI4YsxILugJfG5im2Z5gGOB0cNB578wEg4d9iOMhdKFpje6gb7vJxXTGTOjHOTdIt9ZZ2Dv7S7S9bhy0rW6GkNp0C6687pK7-8tr8Pny_LHdof3769t2s0eGFnhCXtYyn0iLwmuLjbDU0IpxV-ax1jUmvvJlXXOGa0F4waW2THgqLZVGSCboGjwse8cYvmeXJtW3ybiu04MLc1Ilo6yUlaSZJAtpYkgpOq_GmI-OJ0WwOpuoFhNVNlGdTVRV1hSLJmV2aFxUxzDHIT_0j-gH8tp02A</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Homma, Noriyasu</creator><creator>Kawai, Yuko</creator><creator>Shimoyama, Satoshi</creator><creator>Ishibashi, Tadashi</creator><creator>Yoshizawa, Makoto</creator><general>Springer Japan</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20091101</creationdate><title>A study on the effect of morphological filters on computer-aided medical image diagnosis</title><author>Homma, Noriyasu ; Kawai, Yuko ; Shimoyama, Satoshi ; Ishibashi, Tadashi ; Yoshizawa, Makoto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-f9b9745322fad0c6d3c3845e7b97aab01f8f7bb540b615259ad46f39d39c69463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Artificial Intelligence</topic><topic>Computation by Abstract Devices</topic><topic>Computer Science</topic><topic>Control</topic><topic>Mechatronics</topic><topic>Original Article</topic><topic>Robotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Homma, Noriyasu</creatorcontrib><creatorcontrib>Kawai, Yuko</creatorcontrib><creatorcontrib>Shimoyama, Satoshi</creatorcontrib><creatorcontrib>Ishibashi, Tadashi</creatorcontrib><creatorcontrib>Yoshizawa, Makoto</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Artificial life and robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Homma, Noriyasu</au><au>Kawai, Yuko</au><au>Shimoyama, Satoshi</au><au>Ishibashi, Tadashi</au><au>Yoshizawa, Makoto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A study on the effect of morphological filters on computer-aided medical image diagnosis</atitle><jtitle>Artificial life and robotics</jtitle><stitle>Artif Life Robotics</stitle><date>2009-11-01</date><risdate>2009</risdate><volume>14</volume><issue>2</issue><spage>191</spage><epage>194</epage><pages>191-194</pages><issn>1433-5298</issn><eissn>1614-7456</eissn><abstract>We have developed several morphological image filters that can be useful for computer-aided medical image diagnosis. Several computer-aided diagnosis (CAD) systems for lung cancer and breast cancer have been developed to assist the radiologist’s diagnostic work. The CAD systems for lung cancer can automatically detect pathological changes (pulmonary nodules) with a high true-positive rate (TP) even under low false-positive rate (FP) conditions. On the other hand, the conventional CAD systems for breast cancer can automatically detect some pathological changes (calcifications and masses), but the TP for other changes, such as architectural distortion, is still very low. Motivated by the radiologist’s cognitive processes to increase TP for breast cancer, we propose new methods to extract novel morphological features from X-ray mammography. Simulation results demonstrate the effectiveness of the morphological methods for detecting tumor shadows.</abstract><cop>Japan</cop><pub>Springer Japan</pub><doi>10.1007/s10015-009-0651-8</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-5298 |
ispartof | Artificial life and robotics, 2009-11, Vol.14 (2), p.191-194 |
issn | 1433-5298 1614-7456 |
language | eng |
recordid | cdi_proquest_miscellaneous_743479893 |
source | SpringerLink Journals - AutoHoldings |
subjects | Artificial Intelligence Computation by Abstract Devices Computer Science Control Mechatronics Original Article Robotics |
title | A study on the effect of morphological filters on computer-aided medical image diagnosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A03%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20study%20on%20the%20effect%20of%20morphological%20filters%20on%20computer-aided%20medical%20image%20diagnosis&rft.jtitle=Artificial%20life%20and%20robotics&rft.au=Homma,%20Noriyasu&rft.date=2009-11-01&rft.volume=14&rft.issue=2&rft.spage=191&rft.epage=194&rft.pages=191-194&rft.issn=1433-5298&rft.eissn=1614-7456&rft_id=info:doi/10.1007/s10015-009-0651-8&rft_dat=%3Cproquest_cross%3E743479893%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=743479893&rft_id=info:pmid/&rfr_iscdi=true |