Spatial chaos of an extensible conducting rod in a uniform magnetic field

The equilibrium equations for the isotropic Kirchhoff rod are known to form an integrable system. It is also known that the effects of extensibility and shearability of the rod do not break the integrable structure. Nor, as we have shown in a previous paper does the effect of a magnetic field on a c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2009-09, Vol.42 (37), p.375207-375207 (15)
Hauptverfasser: Sinden, D, Heijden, G H M van der
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 375207 (15)
container_issue 37
container_start_page 375207
container_title Journal of physics. A, Mathematical and theoretical
container_volume 42
creator Sinden, D
Heijden, G H M van der
description The equilibrium equations for the isotropic Kirchhoff rod are known to form an integrable system. It is also known that the effects of extensibility and shearability of the rod do not break the integrable structure. Nor, as we have shown in a previous paper does the effect of a magnetic field on a conducting rod. Here we show, by means of Mel'nikov analysis, that, interestingly, the combined effects do destroy integrability; that is, the governing equations for an extensible current-carrying rod in a uniform magnetic field are nonintegrable. This result has implications for possible configurations of electrodynamic space tethers and may be relevant for electromechanical devices.
doi_str_mv 10.1088/1751-8113/42/37/375207
format Article
fullrecord <record><control><sourceid>proquest_iop_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_743473495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743473495</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-b9bad8a646801fd94e7f8c00d7f11cdc4fa5d74d36605dfe9f5b869b3ae159a43</originalsourceid><addsrcrecordid>eNqNkE1LxDAQhosouK7-BclFPNXNNEnTHEX8AsGDeg7TfKyRblKbLui_d5cuouBBGJiBed4ZeIriFOgF0KZZgBRQNgBswasFk5sSFZV7xWy3qGD_x3xYHOX8RqngVFWz4v6pxzFgR8wrpkySJxiJ-xhdzKHtHDEp2rUZQ1ySIVkSIkGyjsGnYUVWuIxuDIb44Dp7XBx47LI72fV58XJz_Xx1Vz483t5fXT6URgCMZatatA3WvG4oeKu4k74xlFrpAYw13KOwkltW11RY75QXbVOrlqEDoZCzeXE-3e2H9L52edSrkI3rOowurbOWnHHJuBIbsp5IM6ScB-d1P4QVDp8aqN6q01sreqtO80ozqSd1m-DZ7gVmg50fMJqQv9MVKOBSwYaDiQup___t8o_MxFbwi9W99ewL7VqKvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>743473495</pqid></control><display><type>article</type><title>Spatial chaos of an extensible conducting rod in a uniform magnetic field</title><source>Institute of Physics Journals</source><creator>Sinden, D ; Heijden, G H M van der</creator><creatorcontrib>Sinden, D ; Heijden, G H M van der</creatorcontrib><description>The equilibrium equations for the isotropic Kirchhoff rod are known to form an integrable system. It is also known that the effects of extensibility and shearability of the rod do not break the integrable structure. Nor, as we have shown in a previous paper does the effect of a magnetic field on a conducting rod. Here we show, by means of Mel'nikov analysis, that, interestingly, the combined effects do destroy integrability; that is, the governing equations for an extensible current-carrying rod in a uniform magnetic field are nonintegrable. This result has implications for possible configurations of electrodynamic space tethers and may be relevant for electromechanical devices.</description><identifier>ISSN: 1751-8121</identifier><identifier>ISSN: 1751-8113</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8113/42/37/375207</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Exact sciences and technology ; Physics</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2009-09, Vol.42 (37), p.375207-375207 (15)</ispartof><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-b9bad8a646801fd94e7f8c00d7f11cdc4fa5d74d36605dfe9f5b869b3ae159a43</citedby><cites>FETCH-LOGICAL-c511t-b9bad8a646801fd94e7f8c00d7f11cdc4fa5d74d36605dfe9f5b869b3ae159a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1751-8113/42/37/375207/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53830,53910</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21914791$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sinden, D</creatorcontrib><creatorcontrib>Heijden, G H M van der</creatorcontrib><title>Spatial chaos of an extensible conducting rod in a uniform magnetic field</title><title>Journal of physics. A, Mathematical and theoretical</title><description>The equilibrium equations for the isotropic Kirchhoff rod are known to form an integrable system. It is also known that the effects of extensibility and shearability of the rod do not break the integrable structure. Nor, as we have shown in a previous paper does the effect of a magnetic field on a conducting rod. Here we show, by means of Mel'nikov analysis, that, interestingly, the combined effects do destroy integrability; that is, the governing equations for an extensible current-carrying rod in a uniform magnetic field are nonintegrable. This result has implications for possible configurations of electrodynamic space tethers and may be relevant for electromechanical devices.</description><subject>Exact sciences and technology</subject><subject>Physics</subject><issn>1751-8121</issn><issn>1751-8113</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LxDAQhosouK7-BclFPNXNNEnTHEX8AsGDeg7TfKyRblKbLui_d5cuouBBGJiBed4ZeIriFOgF0KZZgBRQNgBswasFk5sSFZV7xWy3qGD_x3xYHOX8RqngVFWz4v6pxzFgR8wrpkySJxiJ-xhdzKHtHDEp2rUZQ1ySIVkSIkGyjsGnYUVWuIxuDIb44Dp7XBx47LI72fV58XJz_Xx1Vz483t5fXT6URgCMZatatA3WvG4oeKu4k74xlFrpAYw13KOwkltW11RY75QXbVOrlqEDoZCzeXE-3e2H9L52edSrkI3rOowurbOWnHHJuBIbsp5IM6ScB-d1P4QVDp8aqN6q01sreqtO80ozqSd1m-DZ7gVmg50fMJqQv9MVKOBSwYaDiQup___t8o_MxFbwi9W99ewL7VqKvA</recordid><startdate>20090918</startdate><enddate>20090918</enddate><creator>Sinden, D</creator><creator>Heijden, G H M van der</creator><general>IOP Publishing</general><general>IOP</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20090918</creationdate><title>Spatial chaos of an extensible conducting rod in a uniform magnetic field</title><author>Sinden, D ; Heijden, G H M van der</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-b9bad8a646801fd94e7f8c00d7f11cdc4fa5d74d36605dfe9f5b869b3ae159a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Exact sciences and technology</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sinden, D</creatorcontrib><creatorcontrib>Heijden, G H M van der</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sinden, D</au><au>Heijden, G H M van der</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial chaos of an extensible conducting rod in a uniform magnetic field</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><date>2009-09-18</date><risdate>2009</risdate><volume>42</volume><issue>37</issue><spage>375207</spage><epage>375207 (15)</epage><pages>375207-375207 (15)</pages><issn>1751-8121</issn><issn>1751-8113</issn><eissn>1751-8121</eissn><abstract>The equilibrium equations for the isotropic Kirchhoff rod are known to form an integrable system. It is also known that the effects of extensibility and shearability of the rod do not break the integrable structure. Nor, as we have shown in a previous paper does the effect of a magnetic field on a conducting rod. Here we show, by means of Mel'nikov analysis, that, interestingly, the combined effects do destroy integrability; that is, the governing equations for an extensible current-carrying rod in a uniform magnetic field are nonintegrable. This result has implications for possible configurations of electrodynamic space tethers and may be relevant for electromechanical devices.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1751-8113/42/37/375207</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-8121
ispartof Journal of physics. A, Mathematical and theoretical, 2009-09, Vol.42 (37), p.375207-375207 (15)
issn 1751-8121
1751-8113
1751-8121
language eng
recordid cdi_proquest_miscellaneous_743473495
source Institute of Physics Journals
subjects Exact sciences and technology
Physics
title Spatial chaos of an extensible conducting rod in a uniform magnetic field
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A53%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20chaos%20of%20an%20extensible%20conducting%20rod%20in%20a%20uniform%20magnetic%20field&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Sinden,%20D&rft.date=2009-09-18&rft.volume=42&rft.issue=37&rft.spage=375207&rft.epage=375207%20(15)&rft.pages=375207-375207%20(15)&rft.issn=1751-8121&rft.eissn=1751-8121&rft_id=info:doi/10.1088/1751-8113/42/37/375207&rft_dat=%3Cproquest_iop_p%3E743473495%3C/proquest_iop_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=743473495&rft_id=info:pmid/&rfr_iscdi=true