Spatial chaos of an extensible conducting rod in a uniform magnetic field
The equilibrium equations for the isotropic Kirchhoff rod are known to form an integrable system. It is also known that the effects of extensibility and shearability of the rod do not break the integrable structure. Nor, as we have shown in a previous paper does the effect of a magnetic field on a c...
Gespeichert in:
Veröffentlicht in: | Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2009-09, Vol.42 (37), p.375207-375207 (15) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 375207 (15) |
---|---|
container_issue | 37 |
container_start_page | 375207 |
container_title | Journal of physics. A, Mathematical and theoretical |
container_volume | 42 |
creator | Sinden, D Heijden, G H M van der |
description | The equilibrium equations for the isotropic Kirchhoff rod are known to form an integrable system. It is also known that the effects of extensibility and shearability of the rod do not break the integrable structure. Nor, as we have shown in a previous paper does the effect of a magnetic field on a conducting rod. Here we show, by means of Mel'nikov analysis, that, interestingly, the combined effects do destroy integrability; that is, the governing equations for an extensible current-carrying rod in a uniform magnetic field are nonintegrable. This result has implications for possible configurations of electrodynamic space tethers and may be relevant for electromechanical devices. |
doi_str_mv | 10.1088/1751-8113/42/37/375207 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_743473495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743473495</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-b9bad8a646801fd94e7f8c00d7f11cdc4fa5d74d36605dfe9f5b869b3ae159a43</originalsourceid><addsrcrecordid>eNqNkE1LxDAQhosouK7-BclFPNXNNEnTHEX8AsGDeg7TfKyRblKbLui_d5cuouBBGJiBed4ZeIriFOgF0KZZgBRQNgBswasFk5sSFZV7xWy3qGD_x3xYHOX8RqngVFWz4v6pxzFgR8wrpkySJxiJ-xhdzKHtHDEp2rUZQ1ySIVkSIkGyjsGnYUVWuIxuDIb44Dp7XBx47LI72fV58XJz_Xx1Vz483t5fXT6URgCMZatatA3WvG4oeKu4k74xlFrpAYw13KOwkltW11RY75QXbVOrlqEDoZCzeXE-3e2H9L52edSrkI3rOowurbOWnHHJuBIbsp5IM6ScB-d1P4QVDp8aqN6q01sreqtO80ozqSd1m-DZ7gVmg50fMJqQv9MVKOBSwYaDiQup___t8o_MxFbwi9W99ewL7VqKvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>743473495</pqid></control><display><type>article</type><title>Spatial chaos of an extensible conducting rod in a uniform magnetic field</title><source>Institute of Physics Journals</source><creator>Sinden, D ; Heijden, G H M van der</creator><creatorcontrib>Sinden, D ; Heijden, G H M van der</creatorcontrib><description>The equilibrium equations for the isotropic Kirchhoff rod are known to form an integrable system. It is also known that the effects of extensibility and shearability of the rod do not break the integrable structure. Nor, as we have shown in a previous paper does the effect of a magnetic field on a conducting rod. Here we show, by means of Mel'nikov analysis, that, interestingly, the combined effects do destroy integrability; that is, the governing equations for an extensible current-carrying rod in a uniform magnetic field are nonintegrable. This result has implications for possible configurations of electrodynamic space tethers and may be relevant for electromechanical devices.</description><identifier>ISSN: 1751-8121</identifier><identifier>ISSN: 1751-8113</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8113/42/37/375207</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Exact sciences and technology ; Physics</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2009-09, Vol.42 (37), p.375207-375207 (15)</ispartof><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-b9bad8a646801fd94e7f8c00d7f11cdc4fa5d74d36605dfe9f5b869b3ae159a43</citedby><cites>FETCH-LOGICAL-c511t-b9bad8a646801fd94e7f8c00d7f11cdc4fa5d74d36605dfe9f5b869b3ae159a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1751-8113/42/37/375207/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53830,53910</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21914791$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sinden, D</creatorcontrib><creatorcontrib>Heijden, G H M van der</creatorcontrib><title>Spatial chaos of an extensible conducting rod in a uniform magnetic field</title><title>Journal of physics. A, Mathematical and theoretical</title><description>The equilibrium equations for the isotropic Kirchhoff rod are known to form an integrable system. It is also known that the effects of extensibility and shearability of the rod do not break the integrable structure. Nor, as we have shown in a previous paper does the effect of a magnetic field on a conducting rod. Here we show, by means of Mel'nikov analysis, that, interestingly, the combined effects do destroy integrability; that is, the governing equations for an extensible current-carrying rod in a uniform magnetic field are nonintegrable. This result has implications for possible configurations of electrodynamic space tethers and may be relevant for electromechanical devices.</description><subject>Exact sciences and technology</subject><subject>Physics</subject><issn>1751-8121</issn><issn>1751-8113</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LxDAQhosouK7-BclFPNXNNEnTHEX8AsGDeg7TfKyRblKbLui_d5cuouBBGJiBed4ZeIriFOgF0KZZgBRQNgBswasFk5sSFZV7xWy3qGD_x3xYHOX8RqngVFWz4v6pxzFgR8wrpkySJxiJ-xhdzKHtHDEp2rUZQ1ySIVkSIkGyjsGnYUVWuIxuDIb44Dp7XBx47LI72fV58XJz_Xx1Vz483t5fXT6URgCMZatatA3WvG4oeKu4k74xlFrpAYw13KOwkltW11RY75QXbVOrlqEDoZCzeXE-3e2H9L52edSrkI3rOowurbOWnHHJuBIbsp5IM6ScB-d1P4QVDp8aqN6q01sreqtO80ozqSd1m-DZ7gVmg50fMJqQv9MVKOBSwYaDiQup___t8o_MxFbwi9W99ewL7VqKvA</recordid><startdate>20090918</startdate><enddate>20090918</enddate><creator>Sinden, D</creator><creator>Heijden, G H M van der</creator><general>IOP Publishing</general><general>IOP</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20090918</creationdate><title>Spatial chaos of an extensible conducting rod in a uniform magnetic field</title><author>Sinden, D ; Heijden, G H M van der</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-b9bad8a646801fd94e7f8c00d7f11cdc4fa5d74d36605dfe9f5b869b3ae159a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Exact sciences and technology</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sinden, D</creatorcontrib><creatorcontrib>Heijden, G H M van der</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sinden, D</au><au>Heijden, G H M van der</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial chaos of an extensible conducting rod in a uniform magnetic field</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><date>2009-09-18</date><risdate>2009</risdate><volume>42</volume><issue>37</issue><spage>375207</spage><epage>375207 (15)</epage><pages>375207-375207 (15)</pages><issn>1751-8121</issn><issn>1751-8113</issn><eissn>1751-8121</eissn><abstract>The equilibrium equations for the isotropic Kirchhoff rod are known to form an integrable system. It is also known that the effects of extensibility and shearability of the rod do not break the integrable structure. Nor, as we have shown in a previous paper does the effect of a magnetic field on a conducting rod. Here we show, by means of Mel'nikov analysis, that, interestingly, the combined effects do destroy integrability; that is, the governing equations for an extensible current-carrying rod in a uniform magnetic field are nonintegrable. This result has implications for possible configurations of electrodynamic space tethers and may be relevant for electromechanical devices.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1751-8113/42/37/375207</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-8121 |
ispartof | Journal of physics. A, Mathematical and theoretical, 2009-09, Vol.42 (37), p.375207-375207 (15) |
issn | 1751-8121 1751-8113 1751-8121 |
language | eng |
recordid | cdi_proquest_miscellaneous_743473495 |
source | Institute of Physics Journals |
subjects | Exact sciences and technology Physics |
title | Spatial chaos of an extensible conducting rod in a uniform magnetic field |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A53%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20chaos%20of%20an%20extensible%20conducting%20rod%20in%20a%20uniform%20magnetic%20field&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Sinden,%20D&rft.date=2009-09-18&rft.volume=42&rft.issue=37&rft.spage=375207&rft.epage=375207%20(15)&rft.pages=375207-375207%20(15)&rft.issn=1751-8121&rft.eissn=1751-8121&rft_id=info:doi/10.1088/1751-8113/42/37/375207&rft_dat=%3Cproquest_iop_p%3E743473495%3C/proquest_iop_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=743473495&rft_id=info:pmid/&rfr_iscdi=true |