Simultaneous Tomography and Diffraction Analysis of Creep Damage

Creep damage by void nucleation and growth limits the lifetime of components subjected to loading at high temperatures. We report a combined tomography and diffraction experiment using high-energy synchrotron radiation that permitted us to follow in situ void growth and microstructure development in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2005-04, Vol.308 (5718), p.92-95
Hauptverfasser: Pyzalla, A, Camin, B, Buslaps, T, Di Michiel, M, Kaminski, H, Kottar, A, Pernack, A, Reimers, W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 95
container_issue 5718
container_start_page 92
container_title Science (American Association for the Advancement of Science)
container_volume 308
creator Pyzalla, A
Camin, B
Buslaps, T
Di Michiel, M
Kaminski, H
Kottar, A
Pernack, A
Reimers, W
description Creep damage by void nucleation and growth limits the lifetime of components subjected to loading at high temperatures. We report a combined tomography and diffraction experiment using high-energy synchrotron radiation that permitted us to follow in situ void growth and microstructure development in bulk samples. The results reveal that void growth versus time follows an exponential growth law. The formation of large void volumes coincides with texture evolution and dislocation density, reaching a steady state. Creep damage during a large proportion of sample creep life is homogeneous before damage localization occurs, which leads to rapid failure. The in situ determination of void evolution in bulk samples should allow for the assessment of creep damage in metallic materials and subsequently for lifetime predictions about samples and components that are subject to high-temperature loading.
doi_str_mv 10.1126/science.1106778
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_743466223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A131461560</galeid><jstor_id>3841401</jstor_id><sourcerecordid>A131461560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c834t-725d6aaa407afedd53a3aff51c7130a32eb4ffeb09a427437f1d6081cb6d8afc3</originalsourceid><addsrcrecordid>eNqN00Fv0zAUB_AIgVgpnLkgiECAOGSz48R2bpQOyqSKHrpxtV4dO3hK4s5OJPrtcZWIqagaVQ5R8v-9p-jFL4peYnSOcUovvDSqlSo8IMoYfxRNMCrypEgReRxNECI04YjlZ9Ez728RCllBnkZnOOcopQhNos9r0_R1B62yvY-vbWMrB9tfuxjaMr40WjuQnbFtPGuh3nnjY6vjuVNqG19CA5V6Hj3RUHv1YrxPo5tvX6_n35PlanE1ny0TyUnWJSzNSwoAGWKgVVnmBAhonWPJMEFAUrXJtFYbVECWsowwjUuKOJYbWnLQkkyjj0PfrbN3vfKdaIyXqq6HTxehJqM0TUmQHx6UlOWU85z-F6acogKHiU2jt__AW9u7MJBgMKGIFmke0LsBVVArYVptuzC7fUcxwwRnFOcUBZUcUZVqlYPatkqb8PrAnx_x4SpVY-TRgk8HBcF06ndXQe-9uFr_ON2ufp5uvyxOtnyxfGggo5W2rlWlRDhD89Whvxi8dNZ7p7TYOtOA2wmMxH4nxLgTYtyJUPF6_Hv9plHlvR-XIID3IwAvoQ5HvpXG3zvKECcUB_dqcLe-s-5vTniGM7SP3wyxBiugcqHFzToNQVg7zjjNyR_u0x99</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213606925</pqid></control><display><type>article</type><title>Simultaneous Tomography and Diffraction Analysis of Creep Damage</title><source>JSTOR Archive Collection A-Z Listing</source><source>American Association for the Advancement of Science</source><creator>Pyzalla, A ; Camin, B ; Buslaps, T ; Di Michiel, M ; Kaminski, H ; Kottar, A ; Pernack, A ; Reimers, W</creator><creatorcontrib>Pyzalla, A ; Camin, B ; Buslaps, T ; Di Michiel, M ; Kaminski, H ; Kottar, A ; Pernack, A ; Reimers, W</creatorcontrib><description>Creep damage by void nucleation and growth limits the lifetime of components subjected to loading at high temperatures. We report a combined tomography and diffraction experiment using high-energy synchrotron radiation that permitted us to follow in situ void growth and microstructure development in bulk samples. The results reveal that void growth versus time follows an exponential growth law. The formation of large void volumes coincides with texture evolution and dislocation density, reaching a steady state. Creep damage during a large proportion of sample creep life is homogeneous before damage localization occurs, which leads to rapid failure. The in situ determination of void evolution in bulk samples should allow for the assessment of creep damage in metallic materials and subsequently for lifetime predictions about samples and components that are subject to high-temperature loading.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1106778</identifier><identifier>PMID: 15802600</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Association for the Advancement of Science</publisher><subject>Algorithms ; Analysis ; Carbonates ; Condensed matter: structure, mechanical and thermal properties ; Creep ; Data Processing ; Deformation, plasticity, and creep ; Diffraction ; Electric generators ; Electricity ; Energy ; Exact sciences and technology ; Fossils ; Grain growth ; High temperature ; Maintenance and repair ; Materials ; Mathematics ; Mechanical and acoustical properties of condensed matter ; Mechanical properties of solids ; Metals creep ; Physics ; Radiation damage ; Shales ; Storm damage ; Synchrotron radiation ; Tomography ; Turbines ; Wave diffraction ; X-ray diffraction ; X-rays</subject><ispartof>Science (American Association for the Advancement of Science), 2005-04, Vol.308 (5718), p.92-95</ispartof><rights>Copyright 2005 American Association for the Advancement of Science</rights><rights>2005 INIST-CNRS</rights><rights>COPYRIGHT 2005 American Association for the Advancement of Science</rights><rights>Copyright American Association for the Advancement of Science Apr 1, 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c834t-725d6aaa407afedd53a3aff51c7130a32eb4ffeb09a427437f1d6081cb6d8afc3</citedby><cites>FETCH-LOGICAL-c834t-725d6aaa407afedd53a3aff51c7130a32eb4ffeb09a427437f1d6081cb6d8afc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3841401$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3841401$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,2884,2885,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16708361$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15802600$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pyzalla, A</creatorcontrib><creatorcontrib>Camin, B</creatorcontrib><creatorcontrib>Buslaps, T</creatorcontrib><creatorcontrib>Di Michiel, M</creatorcontrib><creatorcontrib>Kaminski, H</creatorcontrib><creatorcontrib>Kottar, A</creatorcontrib><creatorcontrib>Pernack, A</creatorcontrib><creatorcontrib>Reimers, W</creatorcontrib><title>Simultaneous Tomography and Diffraction Analysis of Creep Damage</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Creep damage by void nucleation and growth limits the lifetime of components subjected to loading at high temperatures. We report a combined tomography and diffraction experiment using high-energy synchrotron radiation that permitted us to follow in situ void growth and microstructure development in bulk samples. The results reveal that void growth versus time follows an exponential growth law. The formation of large void volumes coincides with texture evolution and dislocation density, reaching a steady state. Creep damage during a large proportion of sample creep life is homogeneous before damage localization occurs, which leads to rapid failure. The in situ determination of void evolution in bulk samples should allow for the assessment of creep damage in metallic materials and subsequently for lifetime predictions about samples and components that are subject to high-temperature loading.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Carbonates</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Creep</subject><subject>Data Processing</subject><subject>Deformation, plasticity, and creep</subject><subject>Diffraction</subject><subject>Electric generators</subject><subject>Electricity</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Fossils</subject><subject>Grain growth</subject><subject>High temperature</subject><subject>Maintenance and repair</subject><subject>Materials</subject><subject>Mathematics</subject><subject>Mechanical and acoustical properties of condensed matter</subject><subject>Mechanical properties of solids</subject><subject>Metals creep</subject><subject>Physics</subject><subject>Radiation damage</subject><subject>Shales</subject><subject>Storm damage</subject><subject>Synchrotron radiation</subject><subject>Tomography</subject><subject>Turbines</subject><subject>Wave diffraction</subject><subject>X-ray diffraction</subject><subject>X-rays</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqN00Fv0zAUB_AIgVgpnLkgiECAOGSz48R2bpQOyqSKHrpxtV4dO3hK4s5OJPrtcZWIqagaVQ5R8v-9p-jFL4peYnSOcUovvDSqlSo8IMoYfxRNMCrypEgReRxNECI04YjlZ9Ez728RCllBnkZnOOcopQhNos9r0_R1B62yvY-vbWMrB9tfuxjaMr40WjuQnbFtPGuh3nnjY6vjuVNqG19CA5V6Hj3RUHv1YrxPo5tvX6_n35PlanE1ny0TyUnWJSzNSwoAGWKgVVnmBAhonWPJMEFAUrXJtFYbVECWsowwjUuKOJYbWnLQkkyjj0PfrbN3vfKdaIyXqq6HTxehJqM0TUmQHx6UlOWU85z-F6acogKHiU2jt__AW9u7MJBgMKGIFmke0LsBVVArYVptuzC7fUcxwwRnFOcUBZUcUZVqlYPatkqb8PrAnx_x4SpVY-TRgk8HBcF06ndXQe-9uFr_ON2ufp5uvyxOtnyxfGggo5W2rlWlRDhD89Whvxi8dNZ7p7TYOtOA2wmMxH4nxLgTYtyJUPF6_Hv9plHlvR-XIID3IwAvoQ5HvpXG3zvKECcUB_dqcLe-s-5vTniGM7SP3wyxBiugcqHFzToNQVg7zjjNyR_u0x99</recordid><startdate>20050401</startdate><enddate>20050401</enddate><creator>Pyzalla, A</creator><creator>Camin, B</creator><creator>Buslaps, T</creator><creator>Di Michiel, M</creator><creator>Kaminski, H</creator><creator>Kottar, A</creator><creator>Pernack, A</creator><creator>Reimers, W</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>FBQ</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8GL</scope><scope>IBG</scope><scope>IOV</scope><scope>ISN</scope><scope>0-V</scope><scope>3V.</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88B</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9-</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0K</scope><scope>M0P</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20050401</creationdate><title>Simultaneous Tomography and Diffraction Analysis of Creep Damage</title><author>Pyzalla, A ; Camin, B ; Buslaps, T ; Di Michiel, M ; Kaminski, H ; Kottar, A ; Pernack, A ; Reimers, W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c834t-725d6aaa407afedd53a3aff51c7130a32eb4ffeb09a427437f1d6081cb6d8afc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Carbonates</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Creep</topic><topic>Data Processing</topic><topic>Deformation, plasticity, and creep</topic><topic>Diffraction</topic><topic>Electric generators</topic><topic>Electricity</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Fossils</topic><topic>Grain growth</topic><topic>High temperature</topic><topic>Maintenance and repair</topic><topic>Materials</topic><topic>Mathematics</topic><topic>Mechanical and acoustical properties of condensed matter</topic><topic>Mechanical properties of solids</topic><topic>Metals creep</topic><topic>Physics</topic><topic>Radiation damage</topic><topic>Shales</topic><topic>Storm damage</topic><topic>Synchrotron radiation</topic><topic>Tomography</topic><topic>Turbines</topic><topic>Wave diffraction</topic><topic>X-ray diffraction</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pyzalla, A</creatorcontrib><creatorcontrib>Camin, B</creatorcontrib><creatorcontrib>Buslaps, T</creatorcontrib><creatorcontrib>Di Michiel, M</creatorcontrib><creatorcontrib>Kaminski, H</creatorcontrib><creatorcontrib>Kottar, A</creatorcontrib><creatorcontrib>Pernack, A</creatorcontrib><creatorcontrib>Reimers, W</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: High School</collection><collection>Gale In Context: Biography</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Education Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Agricultural Science Database</collection><collection>Education Database</collection><collection>Consumer Health Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pyzalla, A</au><au>Camin, B</au><au>Buslaps, T</au><au>Di Michiel, M</au><au>Kaminski, H</au><au>Kottar, A</au><au>Pernack, A</au><au>Reimers, W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneous Tomography and Diffraction Analysis of Creep Damage</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2005-04-01</date><risdate>2005</risdate><volume>308</volume><issue>5718</issue><spage>92</spage><epage>95</epage><pages>92-95</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Creep damage by void nucleation and growth limits the lifetime of components subjected to loading at high temperatures. We report a combined tomography and diffraction experiment using high-energy synchrotron radiation that permitted us to follow in situ void growth and microstructure development in bulk samples. The results reveal that void growth versus time follows an exponential growth law. The formation of large void volumes coincides with texture evolution and dislocation density, reaching a steady state. Creep damage during a large proportion of sample creep life is homogeneous before damage localization occurs, which leads to rapid failure. The in situ determination of void evolution in bulk samples should allow for the assessment of creep damage in metallic materials and subsequently for lifetime predictions about samples and components that are subject to high-temperature loading.</abstract><cop>Washington, DC</cop><pub>American Association for the Advancement of Science</pub><pmid>15802600</pmid><doi>10.1126/science.1106778</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2005-04, Vol.308 (5718), p.92-95
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_743466223
source JSTOR Archive Collection A-Z Listing; American Association for the Advancement of Science
subjects Algorithms
Analysis
Carbonates
Condensed matter: structure, mechanical and thermal properties
Creep
Data Processing
Deformation, plasticity, and creep
Diffraction
Electric generators
Electricity
Energy
Exact sciences and technology
Fossils
Grain growth
High temperature
Maintenance and repair
Materials
Mathematics
Mechanical and acoustical properties of condensed matter
Mechanical properties of solids
Metals creep
Physics
Radiation damage
Shales
Storm damage
Synchrotron radiation
Tomography
Turbines
Wave diffraction
X-ray diffraction
X-rays
title Simultaneous Tomography and Diffraction Analysis of Creep Damage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T13%3A44%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneous%20Tomography%20and%20Diffraction%20Analysis%20of%20Creep%20Damage&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Pyzalla,%20A&rft.date=2005-04-01&rft.volume=308&rft.issue=5718&rft.spage=92&rft.epage=95&rft.pages=92-95&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1106778&rft_dat=%3Cgale_proqu%3EA131461560%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213606925&rft_id=info:pmid/15802600&rft_galeid=A131461560&rft_jstor_id=3841401&rfr_iscdi=true