Superconductivity in diamond
Diamond is an electrical insulator well known for its exceptional hardness. It also conducts heat even more effectively than copper, and can withstand very high electric fields 1 . With these physical properties, diamond is attractive for electronic applications 2 , particularly when charge carriers...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2004-04, Vol.428 (6982), p.542-545 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 545 |
---|---|
container_issue | 6982 |
container_start_page | 542 |
container_title | Nature (London) |
container_volume | 428 |
creator | Ekimov, E. A. Sidorov, V. A. Bauer, E. D. Mel'nik, N. N. Curro, N. J. Thompson, J. D. Stishov, S. M. |
description | Diamond is an electrical insulator well known for its exceptional hardness. It also conducts heat even more effectively than copper, and can withstand very high electric fields
1
. With these physical properties, diamond is attractive for electronic applications
2
, particularly when charge carriers are introduced (by chemical doping) into the system. Boron has one less electron than carbon and, because of its small atomic radius, boron is relatively easily incorporated into diamond
3
; as boron acts as a charge acceptor, the resulting diamond is effectively hole-doped. Here we report the discovery of superconductivity in boron-doped diamond synthesized at high pressure (nearly 100,000 atmospheres) and temperature (2,500–2,800 K). Electrical resistivity, magnetic susceptibility, specific heat and field-dependent resistance measurements show that boron-doped diamond is a bulk, type-II superconductor below the superconducting transition temperature
T
c
≈ 4 K; superconductivity survives in a magnetic field up to
H
c2
(0) ≥ 3.5 T. The discovery of superconductivity in diamond-structured carbon suggests that Si and Ge, which also form in the diamond structure, may similarly exhibit superconductivity under the appropriate conditions. |
doi_str_mv | 10.1038/nature02449 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_743465898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A186371118</galeid><sourcerecordid>A186371118</sourcerecordid><originalsourceid>FETCH-LOGICAL-a615t-914df22b26693b5fd5b94dc2e365ef9eb4ba0ad33838b5f0ec51ba2c9e927e6f3</originalsourceid><addsrcrecordid>eNp90s9LHDEUB_AgFl1tT70WkR5aih2b38kcl6X-AGmhKj2GTObNEpnJrMlMqf-9kV1YV1bJIfDeJ1_I4yH0keBTgpn-EewwRsCU83IHTQhXsuBSq100wZjqAmsm99FBSncYY0EU30P7RGChNFUT9Ol6XEB0fahHN_h_fng49uG49rbLpffoXWPbBB9W9yG6Pft5M7sorn6fX86mV4WVRAxFSXjdUFpRKUtWiaYWVclrR4FJAU0JFa8stjVjmuncxuAEqSx1JZRUgWzYIfq6zF3E_n6ENJjOJwdtawP0YzKKMy6FLnWWX96WROVMLjL8_ALe9WMM-ReG4tyXVD6hYonmtgXjQ9MP0bo5BIi27QM0PpenREumCCF6Hbrh3cLfm-fodAvKp4bOu62p3zYeZDPA_2Fux5TM5fWfTXvyup3e_J392qpd7FOK0JhF9J2ND4Zg87Q75tnuZH20GtlYdVCv7WpZMvi-BCm3whzieqbb8h4BskLJig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204536265</pqid></control><display><type>article</type><title>Superconductivity in diamond</title><source>SpringerLink Journals (MCLS)</source><source>Nature</source><creator>Ekimov, E. A. ; Sidorov, V. A. ; Bauer, E. D. ; Mel'nik, N. N. ; Curro, N. J. ; Thompson, J. D. ; Stishov, S. M.</creator><creatorcontrib>Ekimov, E. A. ; Sidorov, V. A. ; Bauer, E. D. ; Mel'nik, N. N. ; Curro, N. J. ; Thompson, J. D. ; Stishov, S. M.</creatorcontrib><description>Diamond is an electrical insulator well known for its exceptional hardness. It also conducts heat even more effectively than copper, and can withstand very high electric fields
1
. With these physical properties, diamond is attractive for electronic applications
2
, particularly when charge carriers are introduced (by chemical doping) into the system. Boron has one less electron than carbon and, because of its small atomic radius, boron is relatively easily incorporated into diamond
3
; as boron acts as a charge acceptor, the resulting diamond is effectively hole-doped. Here we report the discovery of superconductivity in boron-doped diamond synthesized at high pressure (nearly 100,000 atmospheres) and temperature (2,500–2,800 K). Electrical resistivity, magnetic susceptibility, specific heat and field-dependent resistance measurements show that boron-doped diamond is a bulk, type-II superconductor below the superconducting transition temperature
T
c
≈ 4 K; superconductivity survives in a magnetic field up to
H
c2
(0) ≥ 3.5 T. The discovery of superconductivity in diamond-structured carbon suggests that Si and Ge, which also form in the diamond structure, may similarly exhibit superconductivity under the appropriate conditions.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature02449</identifier><identifier>PMID: 15057827</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Boron ; Diamonds ; Electrical resistivity ; Electronics industry ; Experiments ; High pressure ; Humanities and Social Sciences ; letter ; Magnetic fields ; multidisciplinary ; Physical properties ; Science ; Science (multidisciplinary) ; Specific heat ; Superconductivity ; Transition temperatures</subject><ispartof>Nature (London), 2004-04, Vol.428 (6982), p.542-545</ispartof><rights>Macmillan Magazines Ltd. 2004</rights><rights>COPYRIGHT 2004 Nature Publishing Group</rights><rights>Copyright Macmillan Journals Ltd. Apr 1, 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a615t-914df22b26693b5fd5b94dc2e365ef9eb4ba0ad33838b5f0ec51ba2c9e927e6f3</citedby><cites>FETCH-LOGICAL-a615t-914df22b26693b5fd5b94dc2e365ef9eb4ba0ad33838b5f0ec51ba2c9e927e6f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature02449$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature02449$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15057827$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ekimov, E. A.</creatorcontrib><creatorcontrib>Sidorov, V. A.</creatorcontrib><creatorcontrib>Bauer, E. D.</creatorcontrib><creatorcontrib>Mel'nik, N. N.</creatorcontrib><creatorcontrib>Curro, N. J.</creatorcontrib><creatorcontrib>Thompson, J. D.</creatorcontrib><creatorcontrib>Stishov, S. M.</creatorcontrib><title>Superconductivity in diamond</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Diamond is an electrical insulator well known for its exceptional hardness. It also conducts heat even more effectively than copper, and can withstand very high electric fields
1
. With these physical properties, diamond is attractive for electronic applications
2
, particularly when charge carriers are introduced (by chemical doping) into the system. Boron has one less electron than carbon and, because of its small atomic radius, boron is relatively easily incorporated into diamond
3
; as boron acts as a charge acceptor, the resulting diamond is effectively hole-doped. Here we report the discovery of superconductivity in boron-doped diamond synthesized at high pressure (nearly 100,000 atmospheres) and temperature (2,500–2,800 K). Electrical resistivity, magnetic susceptibility, specific heat and field-dependent resistance measurements show that boron-doped diamond is a bulk, type-II superconductor below the superconducting transition temperature
T
c
≈ 4 K; superconductivity survives in a magnetic field up to
H
c2
(0) ≥ 3.5 T. The discovery of superconductivity in diamond-structured carbon suggests that Si and Ge, which also form in the diamond structure, may similarly exhibit superconductivity under the appropriate conditions.</description><subject>Boron</subject><subject>Diamonds</subject><subject>Electrical resistivity</subject><subject>Electronics industry</subject><subject>Experiments</subject><subject>High pressure</subject><subject>Humanities and Social Sciences</subject><subject>letter</subject><subject>Magnetic fields</subject><subject>multidisciplinary</subject><subject>Physical properties</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Specific heat</subject><subject>Superconductivity</subject><subject>Transition temperatures</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp90s9LHDEUB_AgFl1tT70WkR5aih2b38kcl6X-AGmhKj2GTObNEpnJrMlMqf-9kV1YV1bJIfDeJ1_I4yH0keBTgpn-EewwRsCU83IHTQhXsuBSq100wZjqAmsm99FBSncYY0EU30P7RGChNFUT9Ol6XEB0fahHN_h_fng49uG49rbLpffoXWPbBB9W9yG6Pft5M7sorn6fX86mV4WVRAxFSXjdUFpRKUtWiaYWVclrR4FJAU0JFa8stjVjmuncxuAEqSx1JZRUgWzYIfq6zF3E_n6ENJjOJwdtawP0YzKKMy6FLnWWX96WROVMLjL8_ALe9WMM-ReG4tyXVD6hYonmtgXjQ9MP0bo5BIi27QM0PpenREumCCF6Hbrh3cLfm-fodAvKp4bOu62p3zYeZDPA_2Fux5TM5fWfTXvyup3e_J392qpd7FOK0JhF9J2ND4Zg87Q75tnuZH20GtlYdVCv7WpZMvi-BCm3whzieqbb8h4BskLJig</recordid><startdate>20040401</startdate><enddate>20040401</enddate><creator>Ekimov, E. A.</creator><creator>Sidorov, V. A.</creator><creator>Bauer, E. D.</creator><creator>Mel'nik, N. N.</creator><creator>Curro, N. J.</creator><creator>Thompson, J. D.</creator><creator>Stishov, S. M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20040401</creationdate><title>Superconductivity in diamond</title><author>Ekimov, E. A. ; Sidorov, V. A. ; Bauer, E. D. ; Mel'nik, N. N. ; Curro, N. J. ; Thompson, J. D. ; Stishov, S. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a615t-914df22b26693b5fd5b94dc2e365ef9eb4ba0ad33838b5f0ec51ba2c9e927e6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Boron</topic><topic>Diamonds</topic><topic>Electrical resistivity</topic><topic>Electronics industry</topic><topic>Experiments</topic><topic>High pressure</topic><topic>Humanities and Social Sciences</topic><topic>letter</topic><topic>Magnetic fields</topic><topic>multidisciplinary</topic><topic>Physical properties</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Specific heat</topic><topic>Superconductivity</topic><topic>Transition temperatures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ekimov, E. A.</creatorcontrib><creatorcontrib>Sidorov, V. A.</creatorcontrib><creatorcontrib>Bauer, E. D.</creatorcontrib><creatorcontrib>Mel'nik, N. N.</creatorcontrib><creatorcontrib>Curro, N. J.</creatorcontrib><creatorcontrib>Thompson, J. D.</creatorcontrib><creatorcontrib>Stishov, S. M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database (ProQuest)</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ekimov, E. A.</au><au>Sidorov, V. A.</au><au>Bauer, E. D.</au><au>Mel'nik, N. N.</au><au>Curro, N. J.</au><au>Thompson, J. D.</au><au>Stishov, S. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superconductivity in diamond</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2004-04-01</date><risdate>2004</risdate><volume>428</volume><issue>6982</issue><spage>542</spage><epage>545</epage><pages>542-545</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>Diamond is an electrical insulator well known for its exceptional hardness. It also conducts heat even more effectively than copper, and can withstand very high electric fields
1
. With these physical properties, diamond is attractive for electronic applications
2
, particularly when charge carriers are introduced (by chemical doping) into the system. Boron has one less electron than carbon and, because of its small atomic radius, boron is relatively easily incorporated into diamond
3
; as boron acts as a charge acceptor, the resulting diamond is effectively hole-doped. Here we report the discovery of superconductivity in boron-doped diamond synthesized at high pressure (nearly 100,000 atmospheres) and temperature (2,500–2,800 K). Electrical resistivity, magnetic susceptibility, specific heat and field-dependent resistance measurements show that boron-doped diamond is a bulk, type-II superconductor below the superconducting transition temperature
T
c
≈ 4 K; superconductivity survives in a magnetic field up to
H
c2
(0) ≥ 3.5 T. The discovery of superconductivity in diamond-structured carbon suggests that Si and Ge, which also form in the diamond structure, may similarly exhibit superconductivity under the appropriate conditions.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>15057827</pmid><doi>10.1038/nature02449</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2004-04, Vol.428 (6982), p.542-545 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_743465898 |
source | SpringerLink Journals (MCLS); Nature |
subjects | Boron Diamonds Electrical resistivity Electronics industry Experiments High pressure Humanities and Social Sciences letter Magnetic fields multidisciplinary Physical properties Science Science (multidisciplinary) Specific heat Superconductivity Transition temperatures |
title | Superconductivity in diamond |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A07%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superconductivity%20in%20diamond&rft.jtitle=Nature%20(London)&rft.au=Ekimov,%20E.%20A.&rft.date=2004-04-01&rft.volume=428&rft.issue=6982&rft.spage=542&rft.epage=545&rft.pages=542-545&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature02449&rft_dat=%3Cgale_proqu%3EA186371118%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204536265&rft_id=info:pmid/15057827&rft_galeid=A186371118&rfr_iscdi=true |