Small Carbonaceous Molecules, Ethylene Oxide (c-C2H4O) and Cyclopropenylidene (c-C3H2): Sources of the Unidentified Infrared Bands?

We suggest that small carbonaceous molecules (SCMs) may be the sources of the unidentified infrared bands (UIRs) and the underlying continuum. We show that the IR spectroscopy of ethylene oxide (EO, c-C2H4O) and cyclopropenylidene (CP, c-C3H2) closely correlates with the major UIR bands at 3.3, 6.2,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2009-10, Vol.704 (1), p.226-239
Hauptverfasser: Bernstein, Lawrence S, Lynch, David K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 239
container_issue 1
container_start_page 226
container_title The Astrophysical journal
container_volume 704
creator Bernstein, Lawrence S
Lynch, David K
description We suggest that small carbonaceous molecules (SCMs) may be the sources of the unidentified infrared bands (UIRs) and the underlying continuum. We show that the IR spectroscopy of ethylene oxide (EO, c-C2H4O) and cyclopropenylidene (CP, c-C3H2) closely correlates with the major UIR bands at 3.3, 6.2, 7.7, 8.6, and 11.2 Delta *mm, the often seen strong bands at 12.7 and 16.4 Delta *mm, as well as many minor features. The differences in band locations and shapes between laboratory EO absorption spectra and astrophysical UIR emission spectra are attributed to vibrational anharmonicity, Fermi resonance splitting of nearly degenerate vibration levels, and rotational envelope narrowing due to the low temperatures in space. The excitation mechanism is absorption of UV radiation, primarily Ly Delta *a, by SCMs. Photon trapping for this very optically thick transition enhances the absorption by several orders of magnitude. Our abundance analysis for NGC 7027 reveals that the SCM abundance, relative to H2, is ~3 X 10-9 which compares well to radio measurements of the CP abundance range of ~10-9-10-7. The origin of the UIR continuum is discussed in terms of emission from vibrationally and rotationally hot SCM UV photodissociation products and UV excitation of rotationally hot SCM species. Radio lines of CP have been seen in numerous astronomical objects, most displaying the UIR bands. EO is also seen, but in fewer objects, none displaying the UIR bands. We theorize that in UIR objects, EO is formed on, and primarily resides on, carbonaceous grains, precluding radio detection of rotational lines. We suggest laboratory experiments, astronomical observations, and theoretical investigations to further evaluate the SCM mechanism for the UIR bands and continuum.
doi_str_mv 10.1088/0004-637X/704/1/226
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_miscellaneous_743453297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743453297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-d9a007652764495efc3952c79d8ce18ab7f4ddc69fe48867f8e512142768242a3</originalsourceid><addsrcrecordid>eNp90c9rFDEUB_ChKHRt_Qu8BERti9PNr5kkXqQO1S1U9lAL3kKaeWFHssl0Mgvu2X_cDFP2ovSUhHzeI3nfonhD8CXBUi4xxrysmfi5FJgvyZLS-qhYkIrJkrNKvCgWB3FcvErp13SkSi2KP3db4z1qzPAQg7EQdwl9jx7szkP6iK7Hzd5DALT-3bWAzmzZ0BVfnyMTWtTsrY_9EHsIe5-vwwzYip5_QndxN1hIKDo0bgDdhwmMneugRTfBDWbImy-5Tfp8Wrx0xid4_bSeFPdfr380q_J2_e2mubotLZdqLFtlMBZ1RUXNuarAWaYqaoVqpQUizYNwvG1trRxwKWvhJFSEEp69pJwadlK8nfvGNHY62W4Eu7ExBLCjpoTVgguc1YdZ5Z897iCNetslC96bME1HC854xagSWb5_VlJCiBJ0gmyGdogpDeB0P3RbM-w1wXoKUE956CkenQPUROcAc9W7p_YmWePzyILt0qGUUqzyK1R2F7PrYn-4_U9D3bcu48t_8XOv-Auqb7N7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21119727</pqid></control><display><type>article</type><title>Small Carbonaceous Molecules, Ethylene Oxide (c-C2H4O) and Cyclopropenylidene (c-C3H2): Sources of the Unidentified Infrared Bands?</title><source>Institute of Physics Open Access Journal Titles</source><creator>Bernstein, Lawrence S ; Lynch, David K</creator><creatorcontrib>Bernstein, Lawrence S ; Lynch, David K</creatorcontrib><description>We suggest that small carbonaceous molecules (SCMs) may be the sources of the unidentified infrared bands (UIRs) and the underlying continuum. We show that the IR spectroscopy of ethylene oxide (EO, c-C2H4O) and cyclopropenylidene (CP, c-C3H2) closely correlates with the major UIR bands at 3.3, 6.2, 7.7, 8.6, and 11.2 Delta *mm, the often seen strong bands at 12.7 and 16.4 Delta *mm, as well as many minor features. The differences in band locations and shapes between laboratory EO absorption spectra and astrophysical UIR emission spectra are attributed to vibrational anharmonicity, Fermi resonance splitting of nearly degenerate vibration levels, and rotational envelope narrowing due to the low temperatures in space. The excitation mechanism is absorption of UV radiation, primarily Ly Delta *a, by SCMs. Photon trapping for this very optically thick transition enhances the absorption by several orders of magnitude. Our abundance analysis for NGC 7027 reveals that the SCM abundance, relative to H2, is ~3 X 10-9 which compares well to radio measurements of the CP abundance range of ~10-9-10-7. The origin of the UIR continuum is discussed in terms of emission from vibrationally and rotationally hot SCM UV photodissociation products and UV excitation of rotationally hot SCM species. Radio lines of CP have been seen in numerous astronomical objects, most displaying the UIR bands. EO is also seen, but in fewer objects, none displaying the UIR bands. We theorize that in UIR objects, EO is formed on, and primarily resides on, carbonaceous grains, precluding radio detection of rotational lines. We suggest laboratory experiments, astronomical observations, and theoretical investigations to further evaluate the SCM mechanism for the UIR bands and continuum.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.1088/0004-637X/704/1/226</identifier><identifier>CODEN: ASJOAB</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>ABSORPTION ; ABSORPTION SPECTRA ; ABUNDANCE ; ACETALDEHYDE ; ALDEHYDES ; ALKENES ; Astronomy ; ASTROPHYSICS ; ATOMIC AND MOLECULAR PHYSICS ; BOSONS ; CHALCOGENIDES ; CHEMICAL REACTIONS ; DECOMPOSITION ; DISSOCIATION ; Earth, ocean, space ; ELECTROMAGNETIC RADIATION ; ELEMENTARY PARTICLES ; ELEMENTS ; EMISSION ; EMISSION SPECTRA ; ENERGY-LEVEL TRANSITIONS ; ETHYLENE ; Exact sciences and technology ; EXCITATION ; FERMI RESONANCE ; HYDROCARBONS ; HYDROGEN ; INFRARED SPECTRA ; MASSLESS PARTICLES ; NONMETALS ; ORGANIC COMPOUNDS ; OXIDES ; OXYGEN COMPOUNDS ; PHOTOCHEMICAL REACTIONS ; PHOTOLYSIS ; PHOTONS ; PHYSICS ; RADIATIONS ; RESONANCE ; SORPTION ; SPECTRA ; ULTRAVIOLET RADIATION</subject><ispartof>The Astrophysical journal, 2009-10, Vol.704 (1), p.226-239</ispartof><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-d9a007652764495efc3952c79d8ce18ab7f4ddc69fe48867f8e512142768242a3</citedby><cites>FETCH-LOGICAL-c489t-d9a007652764495efc3952c79d8ce18ab7f4ddc69fe48867f8e512142768242a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0004-637X/704/1/226/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,315,781,785,886,27633,27929,27930,53936</link.rule.ids><linktorsrc>$$Uhttp://iopscience.iop.org/0004-637X/704/1/226$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22092979$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/21367470$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bernstein, Lawrence S</creatorcontrib><creatorcontrib>Lynch, David K</creatorcontrib><title>Small Carbonaceous Molecules, Ethylene Oxide (c-C2H4O) and Cyclopropenylidene (c-C3H2): Sources of the Unidentified Infrared Bands?</title><title>The Astrophysical journal</title><description>We suggest that small carbonaceous molecules (SCMs) may be the sources of the unidentified infrared bands (UIRs) and the underlying continuum. We show that the IR spectroscopy of ethylene oxide (EO, c-C2H4O) and cyclopropenylidene (CP, c-C3H2) closely correlates with the major UIR bands at 3.3, 6.2, 7.7, 8.6, and 11.2 Delta *mm, the often seen strong bands at 12.7 and 16.4 Delta *mm, as well as many minor features. The differences in band locations and shapes between laboratory EO absorption spectra and astrophysical UIR emission spectra are attributed to vibrational anharmonicity, Fermi resonance splitting of nearly degenerate vibration levels, and rotational envelope narrowing due to the low temperatures in space. The excitation mechanism is absorption of UV radiation, primarily Ly Delta *a, by SCMs. Photon trapping for this very optically thick transition enhances the absorption by several orders of magnitude. Our abundance analysis for NGC 7027 reveals that the SCM abundance, relative to H2, is ~3 X 10-9 which compares well to radio measurements of the CP abundance range of ~10-9-10-7. The origin of the UIR continuum is discussed in terms of emission from vibrationally and rotationally hot SCM UV photodissociation products and UV excitation of rotationally hot SCM species. Radio lines of CP have been seen in numerous astronomical objects, most displaying the UIR bands. EO is also seen, but in fewer objects, none displaying the UIR bands. We theorize that in UIR objects, EO is formed on, and primarily resides on, carbonaceous grains, precluding radio detection of rotational lines. We suggest laboratory experiments, astronomical observations, and theoretical investigations to further evaluate the SCM mechanism for the UIR bands and continuum.</description><subject>ABSORPTION</subject><subject>ABSORPTION SPECTRA</subject><subject>ABUNDANCE</subject><subject>ACETALDEHYDE</subject><subject>ALDEHYDES</subject><subject>ALKENES</subject><subject>Astronomy</subject><subject>ASTROPHYSICS</subject><subject>ATOMIC AND MOLECULAR PHYSICS</subject><subject>BOSONS</subject><subject>CHALCOGENIDES</subject><subject>CHEMICAL REACTIONS</subject><subject>DECOMPOSITION</subject><subject>DISSOCIATION</subject><subject>Earth, ocean, space</subject><subject>ELECTROMAGNETIC RADIATION</subject><subject>ELEMENTARY PARTICLES</subject><subject>ELEMENTS</subject><subject>EMISSION</subject><subject>EMISSION SPECTRA</subject><subject>ENERGY-LEVEL TRANSITIONS</subject><subject>ETHYLENE</subject><subject>Exact sciences and technology</subject><subject>EXCITATION</subject><subject>FERMI RESONANCE</subject><subject>HYDROCARBONS</subject><subject>HYDROGEN</subject><subject>INFRARED SPECTRA</subject><subject>MASSLESS PARTICLES</subject><subject>NONMETALS</subject><subject>ORGANIC COMPOUNDS</subject><subject>OXIDES</subject><subject>OXYGEN COMPOUNDS</subject><subject>PHOTOCHEMICAL REACTIONS</subject><subject>PHOTOLYSIS</subject><subject>PHOTONS</subject><subject>PHYSICS</subject><subject>RADIATIONS</subject><subject>RESONANCE</subject><subject>SORPTION</subject><subject>SPECTRA</subject><subject>ULTRAVIOLET RADIATION</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp90c9rFDEUB_ChKHRt_Qu8BERti9PNr5kkXqQO1S1U9lAL3kKaeWFHssl0Mgvu2X_cDFP2ovSUhHzeI3nfonhD8CXBUi4xxrysmfi5FJgvyZLS-qhYkIrJkrNKvCgWB3FcvErp13SkSi2KP3db4z1qzPAQg7EQdwl9jx7szkP6iK7Hzd5DALT-3bWAzmzZ0BVfnyMTWtTsrY_9EHsIe5-vwwzYip5_QndxN1hIKDo0bgDdhwmMneugRTfBDWbImy-5Tfp8Wrx0xid4_bSeFPdfr380q_J2_e2mubotLZdqLFtlMBZ1RUXNuarAWaYqaoVqpQUizYNwvG1trRxwKWvhJFSEEp69pJwadlK8nfvGNHY62W4Eu7ExBLCjpoTVgguc1YdZ5Z897iCNetslC96bME1HC854xagSWb5_VlJCiBJ0gmyGdogpDeB0P3RbM-w1wXoKUE956CkenQPUROcAc9W7p_YmWePzyILt0qGUUqzyK1R2F7PrYn-4_U9D3bcu48t_8XOv-Auqb7N7</recordid><startdate>20091010</startdate><enddate>20091010</enddate><creator>Bernstein, Lawrence S</creator><creator>Lynch, David K</creator><general>IOP Publishing</general><general>IOP</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20091010</creationdate><title>Small Carbonaceous Molecules, Ethylene Oxide (c-C2H4O) and Cyclopropenylidene (c-C3H2): Sources of the Unidentified Infrared Bands?</title><author>Bernstein, Lawrence S ; Lynch, David K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-d9a007652764495efc3952c79d8ce18ab7f4ddc69fe48867f8e512142768242a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>ABSORPTION</topic><topic>ABSORPTION SPECTRA</topic><topic>ABUNDANCE</topic><topic>ACETALDEHYDE</topic><topic>ALDEHYDES</topic><topic>ALKENES</topic><topic>Astronomy</topic><topic>ASTROPHYSICS</topic><topic>ATOMIC AND MOLECULAR PHYSICS</topic><topic>BOSONS</topic><topic>CHALCOGENIDES</topic><topic>CHEMICAL REACTIONS</topic><topic>DECOMPOSITION</topic><topic>DISSOCIATION</topic><topic>Earth, ocean, space</topic><topic>ELECTROMAGNETIC RADIATION</topic><topic>ELEMENTARY PARTICLES</topic><topic>ELEMENTS</topic><topic>EMISSION</topic><topic>EMISSION SPECTRA</topic><topic>ENERGY-LEVEL TRANSITIONS</topic><topic>ETHYLENE</topic><topic>Exact sciences and technology</topic><topic>EXCITATION</topic><topic>FERMI RESONANCE</topic><topic>HYDROCARBONS</topic><topic>HYDROGEN</topic><topic>INFRARED SPECTRA</topic><topic>MASSLESS PARTICLES</topic><topic>NONMETALS</topic><topic>ORGANIC COMPOUNDS</topic><topic>OXIDES</topic><topic>OXYGEN COMPOUNDS</topic><topic>PHOTOCHEMICAL REACTIONS</topic><topic>PHOTOLYSIS</topic><topic>PHOTONS</topic><topic>PHYSICS</topic><topic>RADIATIONS</topic><topic>RESONANCE</topic><topic>SORPTION</topic><topic>SPECTRA</topic><topic>ULTRAVIOLET RADIATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bernstein, Lawrence S</creatorcontrib><creatorcontrib>Lynch, David K</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bernstein, Lawrence S</au><au>Lynch, David K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small Carbonaceous Molecules, Ethylene Oxide (c-C2H4O) and Cyclopropenylidene (c-C3H2): Sources of the Unidentified Infrared Bands?</atitle><jtitle>The Astrophysical journal</jtitle><date>2009-10-10</date><risdate>2009</risdate><volume>704</volume><issue>1</issue><spage>226</spage><epage>239</epage><pages>226-239</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><coden>ASJOAB</coden><abstract>We suggest that small carbonaceous molecules (SCMs) may be the sources of the unidentified infrared bands (UIRs) and the underlying continuum. We show that the IR spectroscopy of ethylene oxide (EO, c-C2H4O) and cyclopropenylidene (CP, c-C3H2) closely correlates with the major UIR bands at 3.3, 6.2, 7.7, 8.6, and 11.2 Delta *mm, the often seen strong bands at 12.7 and 16.4 Delta *mm, as well as many minor features. The differences in band locations and shapes between laboratory EO absorption spectra and astrophysical UIR emission spectra are attributed to vibrational anharmonicity, Fermi resonance splitting of nearly degenerate vibration levels, and rotational envelope narrowing due to the low temperatures in space. The excitation mechanism is absorption of UV radiation, primarily Ly Delta *a, by SCMs. Photon trapping for this very optically thick transition enhances the absorption by several orders of magnitude. Our abundance analysis for NGC 7027 reveals that the SCM abundance, relative to H2, is ~3 X 10-9 which compares well to radio measurements of the CP abundance range of ~10-9-10-7. The origin of the UIR continuum is discussed in terms of emission from vibrationally and rotationally hot SCM UV photodissociation products and UV excitation of rotationally hot SCM species. Radio lines of CP have been seen in numerous astronomical objects, most displaying the UIR bands. EO is also seen, but in fewer objects, none displaying the UIR bands. We theorize that in UIR objects, EO is formed on, and primarily resides on, carbonaceous grains, precluding radio detection of rotational lines. We suggest laboratory experiments, astronomical observations, and theoretical investigations to further evaluate the SCM mechanism for the UIR bands and continuum.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/0004-637X/704/1/226</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2009-10, Vol.704 (1), p.226-239
issn 0004-637X
1538-4357
language eng
recordid cdi_proquest_miscellaneous_743453297
source Institute of Physics Open Access Journal Titles
subjects ABSORPTION
ABSORPTION SPECTRA
ABUNDANCE
ACETALDEHYDE
ALDEHYDES
ALKENES
Astronomy
ASTROPHYSICS
ATOMIC AND MOLECULAR PHYSICS
BOSONS
CHALCOGENIDES
CHEMICAL REACTIONS
DECOMPOSITION
DISSOCIATION
Earth, ocean, space
ELECTROMAGNETIC RADIATION
ELEMENTARY PARTICLES
ELEMENTS
EMISSION
EMISSION SPECTRA
ENERGY-LEVEL TRANSITIONS
ETHYLENE
Exact sciences and technology
EXCITATION
FERMI RESONANCE
HYDROCARBONS
HYDROGEN
INFRARED SPECTRA
MASSLESS PARTICLES
NONMETALS
ORGANIC COMPOUNDS
OXIDES
OXYGEN COMPOUNDS
PHOTOCHEMICAL REACTIONS
PHOTOLYSIS
PHOTONS
PHYSICS
RADIATIONS
RESONANCE
SORPTION
SPECTRA
ULTRAVIOLET RADIATION
title Small Carbonaceous Molecules, Ethylene Oxide (c-C2H4O) and Cyclopropenylidene (c-C3H2): Sources of the Unidentified Infrared Bands?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T09%3A59%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small%20Carbonaceous%20Molecules,%20Ethylene%20Oxide%20(c-C2H4O)%20and%20Cyclopropenylidene%20(c-C3H2):%20Sources%20of%20the%20Unidentified%20Infrared%20Bands?&rft.jtitle=The%20Astrophysical%20journal&rft.au=Bernstein,%20Lawrence%20S&rft.date=2009-10-10&rft.volume=704&rft.issue=1&rft.spage=226&rft.epage=239&rft.pages=226-239&rft.issn=0004-637X&rft.eissn=1538-4357&rft.coden=ASJOAB&rft_id=info:doi/10.1088/0004-637X/704/1/226&rft_dat=%3Cproquest_O3W%3E743453297%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21119727&rft_id=info:pmid/&rfr_iscdi=true