Resonant bonding in crystalline phase-change materials
The identification of materials suitable for non-volatile phase-change memory applications is driven by the need to find materials with tailored properties for different technological applications and the desire to understand the scientific basis for their unique properties. Here, we report the obse...
Gespeichert in:
Veröffentlicht in: | Nature materials 2008-08, Vol.7 (8), p.653-658 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 658 |
---|---|
container_issue | 8 |
container_start_page | 653 |
container_title | Nature materials |
container_volume | 7 |
creator | Shportko, Kostiantyn Kremers, Stephan Woda, Michael Lencer, Dominic Robertson, John Wuttig, Matthias |
description | The identification of materials suitable for non-volatile phase-change memory applications is driven by the need to find materials with tailored properties for different technological applications and the desire to understand the scientific basis for their unique properties. Here, we report the observation of a distinctive and characteristic feature of phase-change materials. Measurements of the dielectric function in the energy range from 0.025 to 3 eV reveal that the optical dielectric constant is 70–200% larger for the crystalline than the amorphous phases. This difference is attributed to a significant change in bonding between the two phases. The optical dielectric constant of the amorphous phases is that expected of a covalent semiconductor, whereas that of the crystalline phases is strongly enhanced by resonant bonding effects. The quantification of these is enabled by measurements of the electronic polarizability. As this bonding in the crystalline state is a unique fingerprint for phase-change materials, a simple scheme to identify and characterize potential phase-change materials emerges.
Although phase-change materials are of significant importance for optical and electronic information storage applications, the search for new materials so far has been based on empirical methods. Now, the discovery that their crystalline phase shows resonant bonding opens the way to a deterministic search for new phase-change materials. |
doi_str_mv | 10.1038/nmat2226 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743427487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743427487</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-e6938d84a716c591211d23cda7bc88a9b843e2ffb4251692e56dcc9cdf15642e3</originalsourceid><addsrcrecordid>eNp90MtKxDAUBuAgijOOgk8gxYWXRbU5za1LGbzBgCC6Lml6OtOhTcekXczbG5mKoODqBPLxn-Qn5JQmNzRJ1a1tdQ8AYo9MKZMiZkIk--OZUoAJOfJ-nSRAOReHZEKVAGCJmBLxir6z2vZR0dmytsuotpFxW9_rpqktRpuV9hiblbZLjMIadLVu_DE5qMLAk3HOyPvD_dv8KV68PD7P7xaxSSXrYxRZqkrFtKTC8IwCpSWkptSyMErprFAsRaiqggGnIgPkojQmM2VFuWCA6Yxc7nI3rvsY0Pd5W3uDTaMtdoPPJUsZSKZkkBf_yvASxjPIAjz_Bdfd4Gz4RR4qlJxLJQK62iHjOu8dVvnG1a1225wm-Vfl-XflgZ6NeUPRYvkDx44DuN4BH65Ci-5n4Z-wT68hiK4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222755786</pqid></control><display><type>article</type><title>Resonant bonding in crystalline phase-change materials</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Shportko, Kostiantyn ; Kremers, Stephan ; Woda, Michael ; Lencer, Dominic ; Robertson, John ; Wuttig, Matthias</creator><creatorcontrib>Shportko, Kostiantyn ; Kremers, Stephan ; Woda, Michael ; Lencer, Dominic ; Robertson, John ; Wuttig, Matthias</creatorcontrib><description>The identification of materials suitable for non-volatile phase-change memory applications is driven by the need to find materials with tailored properties for different technological applications and the desire to understand the scientific basis for their unique properties. Here, we report the observation of a distinctive and characteristic feature of phase-change materials. Measurements of the dielectric function in the energy range from 0.025 to 3 eV reveal that the optical dielectric constant is 70–200% larger for the crystalline than the amorphous phases. This difference is attributed to a significant change in bonding between the two phases. The optical dielectric constant of the amorphous phases is that expected of a covalent semiconductor, whereas that of the crystalline phases is strongly enhanced by resonant bonding effects. The quantification of these is enabled by measurements of the electronic polarizability. As this bonding in the crystalline state is a unique fingerprint for phase-change materials, a simple scheme to identify and characterize potential phase-change materials emerges.
Although phase-change materials are of significant importance for optical and electronic information storage applications, the search for new materials so far has been based on empirical methods. Now, the discovery that their crystalline phase shows resonant bonding opens the way to a deterministic search for new phase-change materials.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat2226</identifier><identifier>PMID: 18622406</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Biomaterials ; Chemistry and Materials Science ; Condensed Matter Physics ; Crystallization ; Materials Science ; Nanotechnology ; Optical and Electronic Materials ; Optoelectronics ; Semiconductors</subject><ispartof>Nature materials, 2008-08, Vol.7 (8), p.653-658</ispartof><rights>Springer Nature Limited 2008</rights><rights>Copyright Nature Publishing Group Aug 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-e6938d84a716c591211d23cda7bc88a9b843e2ffb4251692e56dcc9cdf15642e3</citedby><cites>FETCH-LOGICAL-c374t-e6938d84a716c591211d23cda7bc88a9b843e2ffb4251692e56dcc9cdf15642e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmat2226$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmat2226$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18622406$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shportko, Kostiantyn</creatorcontrib><creatorcontrib>Kremers, Stephan</creatorcontrib><creatorcontrib>Woda, Michael</creatorcontrib><creatorcontrib>Lencer, Dominic</creatorcontrib><creatorcontrib>Robertson, John</creatorcontrib><creatorcontrib>Wuttig, Matthias</creatorcontrib><title>Resonant bonding in crystalline phase-change materials</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>The identification of materials suitable for non-volatile phase-change memory applications is driven by the need to find materials with tailored properties for different technological applications and the desire to understand the scientific basis for their unique properties. Here, we report the observation of a distinctive and characteristic feature of phase-change materials. Measurements of the dielectric function in the energy range from 0.025 to 3 eV reveal that the optical dielectric constant is 70–200% larger for the crystalline than the amorphous phases. This difference is attributed to a significant change in bonding between the two phases. The optical dielectric constant of the amorphous phases is that expected of a covalent semiconductor, whereas that of the crystalline phases is strongly enhanced by resonant bonding effects. The quantification of these is enabled by measurements of the electronic polarizability. As this bonding in the crystalline state is a unique fingerprint for phase-change materials, a simple scheme to identify and characterize potential phase-change materials emerges.
Although phase-change materials are of significant importance for optical and electronic information storage applications, the search for new materials so far has been based on empirical methods. Now, the discovery that their crystalline phase shows resonant bonding opens the way to a deterministic search for new phase-change materials.</description><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Crystallization</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Optoelectronics</subject><subject>Semiconductors</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp90MtKxDAUBuAgijOOgk8gxYWXRbU5za1LGbzBgCC6Lml6OtOhTcekXczbG5mKoODqBPLxn-Qn5JQmNzRJ1a1tdQ8AYo9MKZMiZkIk--OZUoAJOfJ-nSRAOReHZEKVAGCJmBLxir6z2vZR0dmytsuotpFxW9_rpqktRpuV9hiblbZLjMIadLVu_DE5qMLAk3HOyPvD_dv8KV68PD7P7xaxSSXrYxRZqkrFtKTC8IwCpSWkptSyMErprFAsRaiqggGnIgPkojQmM2VFuWCA6Yxc7nI3rvsY0Pd5W3uDTaMtdoPPJUsZSKZkkBf_yvASxjPIAjz_Bdfd4Gz4RR4qlJxLJQK62iHjOu8dVvnG1a1225wm-Vfl-XflgZ6NeUPRYvkDx44DuN4BH65Ci-5n4Z-wT68hiK4</recordid><startdate>20080801</startdate><enddate>20080801</enddate><creator>Shportko, Kostiantyn</creator><creator>Kremers, Stephan</creator><creator>Woda, Michael</creator><creator>Lencer, Dominic</creator><creator>Robertson, John</creator><creator>Wuttig, Matthias</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>20080801</creationdate><title>Resonant bonding in crystalline phase-change materials</title><author>Shportko, Kostiantyn ; Kremers, Stephan ; Woda, Michael ; Lencer, Dominic ; Robertson, John ; Wuttig, Matthias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-e6938d84a716c591211d23cda7bc88a9b843e2ffb4251692e56dcc9cdf15642e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Crystallization</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Optoelectronics</topic><topic>Semiconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shportko, Kostiantyn</creatorcontrib><creatorcontrib>Kremers, Stephan</creatorcontrib><creatorcontrib>Woda, Michael</creatorcontrib><creatorcontrib>Lencer, Dominic</creatorcontrib><creatorcontrib>Robertson, John</creatorcontrib><creatorcontrib>Wuttig, Matthias</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shportko, Kostiantyn</au><au>Kremers, Stephan</au><au>Woda, Michael</au><au>Lencer, Dominic</au><au>Robertson, John</au><au>Wuttig, Matthias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resonant bonding in crystalline phase-change materials</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2008-08-01</date><risdate>2008</risdate><volume>7</volume><issue>8</issue><spage>653</spage><epage>658</epage><pages>653-658</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>The identification of materials suitable for non-volatile phase-change memory applications is driven by the need to find materials with tailored properties for different technological applications and the desire to understand the scientific basis for their unique properties. Here, we report the observation of a distinctive and characteristic feature of phase-change materials. Measurements of the dielectric function in the energy range from 0.025 to 3 eV reveal that the optical dielectric constant is 70–200% larger for the crystalline than the amorphous phases. This difference is attributed to a significant change in bonding between the two phases. The optical dielectric constant of the amorphous phases is that expected of a covalent semiconductor, whereas that of the crystalline phases is strongly enhanced by resonant bonding effects. The quantification of these is enabled by measurements of the electronic polarizability. As this bonding in the crystalline state is a unique fingerprint for phase-change materials, a simple scheme to identify and characterize potential phase-change materials emerges.
Although phase-change materials are of significant importance for optical and electronic information storage applications, the search for new materials so far has been based on empirical methods. Now, the discovery that their crystalline phase shows resonant bonding opens the way to a deterministic search for new phase-change materials.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>18622406</pmid><doi>10.1038/nmat2226</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2008-08, Vol.7 (8), p.653-658 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_proquest_miscellaneous_743427487 |
source | Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | Biomaterials Chemistry and Materials Science Condensed Matter Physics Crystallization Materials Science Nanotechnology Optical and Electronic Materials Optoelectronics Semiconductors |
title | Resonant bonding in crystalline phase-change materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A17%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resonant%20bonding%20in%20crystalline%20phase-change%20materials&rft.jtitle=Nature%20materials&rft.au=Shportko,%20Kostiantyn&rft.date=2008-08-01&rft.volume=7&rft.issue=8&rft.spage=653&rft.epage=658&rft.pages=653-658&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat2226&rft_dat=%3Cproquest_cross%3E743427487%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222755786&rft_id=info:pmid/18622406&rfr_iscdi=true |