RhoG activates Rac1 by direct interaction with the Dock180-binding protein Elmo

The small GTPase Rac has a central role in regulating the actin cytoskeleton during cell migration and axon guidance 1 . Elmo has been identified as an upstream regulator of Rac1 that binds to and functionally cooperates with Dock180 (refs 2–4 ). Dock180 does not contain a conventional catalytic dom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2003-07, Vol.424 (6947), p.461-464
Hauptverfasser: Katoh, Hironori, Negishi, Manabu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 464
container_issue 6947
container_start_page 461
container_title Nature (London)
container_volume 424
creator Katoh, Hironori
Negishi, Manabu
description The small GTPase Rac has a central role in regulating the actin cytoskeleton during cell migration and axon guidance 1 . Elmo has been identified as an upstream regulator of Rac1 that binds to and functionally cooperates with Dock180 (refs 2–4 ). Dock180 does not contain a conventional catalytic domain for guanine nucleotide exchange on Rac, but possesses a domain that directly binds to and specifically activates Rac1 (refs 5 , 6 ). The small GTPase RhoG mediates several cellular morphological processes, such as neurite outgrowth in neuronal cells, through a signalling cascade that activates Rac1 (refs 7–12 ); however, the downstream target of RhoG and the mechanism by which RhoG regulates Rac1 activity remain unclear. Here we show that RhoG interacts directly with Elmo in a GTP-dependent manner and forms a ternary complex with Dock180 to induce activation of Rac1. The RhoG–Elmo–Dock180 pathway is required for activation of Rac1 and cell spreading mediated by integrin, as well as for neurite outgrowth induced by nerve growth factor. We conclude that RhoG activates Rac1 through Elmo and Dock180 to control cell morphology.
doi_str_mv 10.1038/nature01817
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_743415632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A187747784</galeid><sourcerecordid>A187747784</sourcerecordid><originalsourceid>FETCH-LOGICAL-c616t-fce373fd284b49c86caffb98d2ba205f44e83a8d4431c234fd12f76320ecabd53</originalsourceid><addsrcrecordid>eNqF0tFr1DAcB_AiijunT75LEaaIdv7SpE36eJxzDoaDc-JjSdNf7jLb9Jak6v57c9zB7eRU8lBIPvmGfvklyXMCpwSoeG9lGB0CEYQ_SCaE8TJjpeAPkwlALjIQtDxKnnh_AwAF4exxckRywSvgfJJczZfDeSpVMD9kQJ_OpSJpc5e2xqEKqbEB3fp0sOlPE5ZpWGL6YVDfiYCsMbY1dpGu3BDQ2PSs64enySMtO4_Ptt_j5OvHs-vZp-zy6vxiNr3MVEnKkGmFlFPd5oI1rFKiVFLrphJt3sgcCs0YCipFyxglKqdMtyTXvKQ5oJJNW9Dj5PUmNz5-O6IPdW-8wq6TFofR15xRRop4IcpX_5a0gKIq-X8hiZ2Rkq8TX_4Bb4bR2fi7dQ6soECBRZRt0EJ2WBurhxCLXKCNfXaDRW3i9jRmcsa5YLvQPa9W5ra-j04PoLha7I06mPpm70I0AX-FhRy9ry--zPft27_b6fW32eeDWrnBe4e6XjnTS3dXE6jXc1nfm8uoX2wrG5se253dDmIEJ1sgvZKddtIq43eOVQJAQHTvNs7HI7tAt-v-0Lu_AaBn9TU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204530304</pqid></control><display><type>article</type><title>RhoG activates Rac1 by direct interaction with the Dock180-binding protein Elmo</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Katoh, Hironori ; Negishi, Manabu</creator><creatorcontrib>Katoh, Hironori ; Negishi, Manabu</creatorcontrib><description>The small GTPase Rac has a central role in regulating the actin cytoskeleton during cell migration and axon guidance 1 . Elmo has been identified as an upstream regulator of Rac1 that binds to and functionally cooperates with Dock180 (refs 2–4 ). Dock180 does not contain a conventional catalytic domain for guanine nucleotide exchange on Rac, but possesses a domain that directly binds to and specifically activates Rac1 (refs 5 , 6 ). The small GTPase RhoG mediates several cellular morphological processes, such as neurite outgrowth in neuronal cells, through a signalling cascade that activates Rac1 (refs 7–12 ); however, the downstream target of RhoG and the mechanism by which RhoG regulates Rac1 activity remain unclear. Here we show that RhoG interacts directly with Elmo in a GTP-dependent manner and forms a ternary complex with Dock180 to induce activation of Rac1. The RhoG–Elmo–Dock180 pathway is required for activation of Rac1 and cell spreading mediated by integrin, as well as for neurite outgrowth induced by nerve growth factor. We conclude that RhoG activates Rac1 through Elmo and Dock180 to control cell morphology.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature01817</identifier><identifier>PMID: 12879077</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Animals ; Biochemistry ; Biological and medical sciences ; Carrier Proteins - chemistry ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Cell morphology ; Cell Size - drug effects ; Fluorescent Antibody Technique ; GTP Phosphohydrolases - genetics ; GTP Phosphohydrolases - metabolism ; Guanosine Triphosphate - metabolism ; HeLa Cells ; Humanities and Social Sciences ; Humans ; Integrins - metabolism ; letter ; Medical sciences ; multidisciplinary ; Mutation - genetics ; Nerve Growth Factor - pharmacology ; Neurites - metabolism ; PC12 Cells ; Protein Binding ; Protein Transport ; Proteins ; rac GTP-Binding Proteins - genetics ; rac GTP-Binding Proteins - metabolism ; rac1 GTP-Binding Protein - metabolism ; Rats ; rho GTP-Binding Proteins ; Science ; Science (multidisciplinary)</subject><ispartof>Nature (London), 2003-07, Vol.424 (6947), p.461-464</ispartof><rights>Macmillan Magazines Ltd. 2003</rights><rights>2003 INIST-CNRS</rights><rights>COPYRIGHT 2003 Nature Publishing Group</rights><rights>Copyright Macmillan Journals Ltd. Jul 24, 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c616t-fce373fd284b49c86caffb98d2ba205f44e83a8d4431c234fd12f76320ecabd53</citedby><cites>FETCH-LOGICAL-c616t-fce373fd284b49c86caffb98d2ba205f44e83a8d4431c234fd12f76320ecabd53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature01817$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature01817$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14980080$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12879077$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Katoh, Hironori</creatorcontrib><creatorcontrib>Negishi, Manabu</creatorcontrib><title>RhoG activates Rac1 by direct interaction with the Dock180-binding protein Elmo</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>The small GTPase Rac has a central role in regulating the actin cytoskeleton during cell migration and axon guidance 1 . Elmo has been identified as an upstream regulator of Rac1 that binds to and functionally cooperates with Dock180 (refs 2–4 ). Dock180 does not contain a conventional catalytic domain for guanine nucleotide exchange on Rac, but possesses a domain that directly binds to and specifically activates Rac1 (refs 5 , 6 ). The small GTPase RhoG mediates several cellular morphological processes, such as neurite outgrowth in neuronal cells, through a signalling cascade that activates Rac1 (refs 7–12 ); however, the downstream target of RhoG and the mechanism by which RhoG regulates Rac1 activity remain unclear. Here we show that RhoG interacts directly with Elmo in a GTP-dependent manner and forms a ternary complex with Dock180 to induce activation of Rac1. The RhoG–Elmo–Dock180 pathway is required for activation of Rac1 and cell spreading mediated by integrin, as well as for neurite outgrowth induced by nerve growth factor. We conclude that RhoG activates Rac1 through Elmo and Dock180 to control cell morphology.</description><subject>Animals</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>Carrier Proteins - chemistry</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Cell morphology</subject><subject>Cell Size - drug effects</subject><subject>Fluorescent Antibody Technique</subject><subject>GTP Phosphohydrolases - genetics</subject><subject>GTP Phosphohydrolases - metabolism</subject><subject>Guanosine Triphosphate - metabolism</subject><subject>HeLa Cells</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Integrins - metabolism</subject><subject>letter</subject><subject>Medical sciences</subject><subject>multidisciplinary</subject><subject>Mutation - genetics</subject><subject>Nerve Growth Factor - pharmacology</subject><subject>Neurites - metabolism</subject><subject>PC12 Cells</subject><subject>Protein Binding</subject><subject>Protein Transport</subject><subject>Proteins</subject><subject>rac GTP-Binding Proteins - genetics</subject><subject>rac GTP-Binding Proteins - metabolism</subject><subject>rac1 GTP-Binding Protein - metabolism</subject><subject>Rats</subject><subject>rho GTP-Binding Proteins</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0tFr1DAcB_AiijunT75LEaaIdv7SpE36eJxzDoaDc-JjSdNf7jLb9Jak6v57c9zB7eRU8lBIPvmGfvklyXMCpwSoeG9lGB0CEYQ_SCaE8TJjpeAPkwlALjIQtDxKnnh_AwAF4exxckRywSvgfJJczZfDeSpVMD9kQJ_OpSJpc5e2xqEKqbEB3fp0sOlPE5ZpWGL6YVDfiYCsMbY1dpGu3BDQ2PSs64enySMtO4_Ptt_j5OvHs-vZp-zy6vxiNr3MVEnKkGmFlFPd5oI1rFKiVFLrphJt3sgcCs0YCipFyxglKqdMtyTXvKQ5oJJNW9Dj5PUmNz5-O6IPdW-8wq6TFofR15xRRop4IcpX_5a0gKIq-X8hiZ2Rkq8TX_4Bb4bR2fi7dQ6soECBRZRt0EJ2WBurhxCLXKCNfXaDRW3i9jRmcsa5YLvQPa9W5ra-j04PoLha7I06mPpm70I0AX-FhRy9ry--zPft27_b6fW32eeDWrnBe4e6XjnTS3dXE6jXc1nfm8uoX2wrG5se253dDmIEJ1sgvZKddtIq43eOVQJAQHTvNs7HI7tAt-v-0Lu_AaBn9TU</recordid><startdate>20030724</startdate><enddate>20030724</enddate><creator>Katoh, Hironori</creator><creator>Negishi, Manabu</creator><general>Nature Publishing Group UK</general><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20030724</creationdate><title>RhoG activates Rac1 by direct interaction with the Dock180-binding protein Elmo</title><author>Katoh, Hironori ; Negishi, Manabu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c616t-fce373fd284b49c86caffb98d2ba205f44e83a8d4431c234fd12f76320ecabd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Animals</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>Carrier Proteins - chemistry</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Cell morphology</topic><topic>Cell Size - drug effects</topic><topic>Fluorescent Antibody Technique</topic><topic>GTP Phosphohydrolases - genetics</topic><topic>GTP Phosphohydrolases - metabolism</topic><topic>Guanosine Triphosphate - metabolism</topic><topic>HeLa Cells</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Integrins - metabolism</topic><topic>letter</topic><topic>Medical sciences</topic><topic>multidisciplinary</topic><topic>Mutation - genetics</topic><topic>Nerve Growth Factor - pharmacology</topic><topic>Neurites - metabolism</topic><topic>PC12 Cells</topic><topic>Protein Binding</topic><topic>Protein Transport</topic><topic>Proteins</topic><topic>rac GTP-Binding Proteins - genetics</topic><topic>rac GTP-Binding Proteins - metabolism</topic><topic>rac1 GTP-Binding Protein - metabolism</topic><topic>Rats</topic><topic>rho GTP-Binding Proteins</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Katoh, Hironori</creatorcontrib><creatorcontrib>Negishi, Manabu</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Katoh, Hironori</au><au>Negishi, Manabu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RhoG activates Rac1 by direct interaction with the Dock180-binding protein Elmo</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2003-07-24</date><risdate>2003</risdate><volume>424</volume><issue>6947</issue><spage>461</spage><epage>464</epage><pages>461-464</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>The small GTPase Rac has a central role in regulating the actin cytoskeleton during cell migration and axon guidance 1 . Elmo has been identified as an upstream regulator of Rac1 that binds to and functionally cooperates with Dock180 (refs 2–4 ). Dock180 does not contain a conventional catalytic domain for guanine nucleotide exchange on Rac, but possesses a domain that directly binds to and specifically activates Rac1 (refs 5 , 6 ). The small GTPase RhoG mediates several cellular morphological processes, such as neurite outgrowth in neuronal cells, through a signalling cascade that activates Rac1 (refs 7–12 ); however, the downstream target of RhoG and the mechanism by which RhoG regulates Rac1 activity remain unclear. Here we show that RhoG interacts directly with Elmo in a GTP-dependent manner and forms a ternary complex with Dock180 to induce activation of Rac1. The RhoG–Elmo–Dock180 pathway is required for activation of Rac1 and cell spreading mediated by integrin, as well as for neurite outgrowth induced by nerve growth factor. We conclude that RhoG activates Rac1 through Elmo and Dock180 to control cell morphology.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>12879077</pmid><doi>10.1038/nature01817</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2003-07, Vol.424 (6947), p.461-464
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_743415632
source MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online
subjects Animals
Biochemistry
Biological and medical sciences
Carrier Proteins - chemistry
Carrier Proteins - genetics
Carrier Proteins - metabolism
Cell morphology
Cell Size - drug effects
Fluorescent Antibody Technique
GTP Phosphohydrolases - genetics
GTP Phosphohydrolases - metabolism
Guanosine Triphosphate - metabolism
HeLa Cells
Humanities and Social Sciences
Humans
Integrins - metabolism
letter
Medical sciences
multidisciplinary
Mutation - genetics
Nerve Growth Factor - pharmacology
Neurites - metabolism
PC12 Cells
Protein Binding
Protein Transport
Proteins
rac GTP-Binding Proteins - genetics
rac GTP-Binding Proteins - metabolism
rac1 GTP-Binding Protein - metabolism
Rats
rho GTP-Binding Proteins
Science
Science (multidisciplinary)
title RhoG activates Rac1 by direct interaction with the Dock180-binding protein Elmo
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T04%3A55%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RhoG%20activates%20Rac1%20by%20direct%20interaction%20with%20the%20Dock180-binding%20protein%20Elmo&rft.jtitle=Nature%20(London)&rft.au=Katoh,%20Hironori&rft.date=2003-07-24&rft.volume=424&rft.issue=6947&rft.spage=461&rft.epage=464&rft.pages=461-464&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature01817&rft_dat=%3Cgale_proqu%3EA187747784%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204530304&rft_id=info:pmid/12879077&rft_galeid=A187747784&rfr_iscdi=true