Radiation-Hydrodynamic Simulations of Collapse and Fragmentation in Massive Protostellar Cores

We simulate the early stages of the evolution of turbulent, virialized, high-mass protostellar cores, with primary attention to how cores fragment and whether they form a small or large number of protostars. Our simulations use the Orion adaptive mesh refinement code to follow the collapse from 60.1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2007-02, Vol.656 (2), p.959-979
Hauptverfasser: Krumholz, Mark R, Klein, Richard I, McKee, Christopher F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 979
container_issue 2
container_start_page 959
container_title The Astrophysical journal
container_volume 656
creator Krumholz, Mark R
Klein, Richard I
McKee, Christopher F
description We simulate the early stages of the evolution of turbulent, virialized, high-mass protostellar cores, with primary attention to how cores fragment and whether they form a small or large number of protostars. Our simulations use the Orion adaptive mesh refinement code to follow the collapse from 60.1 pc scales to 610 AU scales, for durations that cover the main fragmentation phase, using three-dimensional gravito-radiation hydrodynamics. We find that for a wide range of initial conditions radiation feedback from accreting protostars inhibits the formation of fragments, so that the vast majority of the collapsed mass accretes onto one or a few objects. Most of the fragmentation that does occur takes place in massive, self-shielding disks. These are driven to gravitational instability by rapid accretion, producing rapid mass and angular momentum transport that allows most of the gas to accrete onto the central star rather than forming fragments. In contrast, a control run using the same initial conditions but an isothermal equation of state produces much more fragmentation, both in and out of the disk. We conclude that massive cores with observed properties are not likely to fragment into many stars, so that, at least at high masses, the core mass function probably determines the stellar initial mass function. Our results also demonstrate that simulations of massive star-forming regions that do not include radiative transfer, and instead rely on a barotropic equation of state or optically thin heating and cooling curves, are likely to produce misleading results.
doi_str_mv 10.1086/510664
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_miscellaneous_743412906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20351811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-36e8e6a81b7432afcf8d93681bc74c4273a281a341bad8fd77ff0714b292c44a3</originalsourceid><addsrcrecordid>eNp90d1LHDEQAPAgFjzP-jesD7YgrOY72cdyeFU4qfQD-mSYyyYS2d1sk73C_ffdvROFCj6FyfwyE2YQOiX4kmAtrwTBUvIDNCOC6ZIzoQ7RDGPMS8nU7yN0nPPTFNKqmqGH71AHGELsypttnWK97aANtvgR2k2zu89F9MUiNg302RXQ1cUywWPrumGXLkJX3EHO4a8r7lMcYh7caNP4JLl8gj54aLL7-HzO0a_l9c_FTbn69vV28WVVWq7EUDLptJOgyVpxRsFbr-uKyTG2iltOFQOqCTBO1lBrXyvlPVaEr2lFLefA5ujzvm6f4p-Ny4NpQ7bTRzoXN9mMZTmhFZaj_PSupJgJogl5hTbFnJPzpk-hhbQ1BJtp0GY_6BGeP1eEbKHxCTob8qvWQmqpxegu9i7E_iU7LcJMezFSSENNJSrT137EZ2_xf43_AXMElIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20351811</pqid></control><display><type>article</type><title>Radiation-Hydrodynamic Simulations of Collapse and Fragmentation in Massive Protostellar Cores</title><source>IOP Publishing Free Content</source><creator>Krumholz, Mark R ; Klein, Richard I ; McKee, Christopher F</creator><creatorcontrib>Krumholz, Mark R ; Klein, Richard I ; McKee, Christopher F</creatorcontrib><description>We simulate the early stages of the evolution of turbulent, virialized, high-mass protostellar cores, with primary attention to how cores fragment and whether they form a small or large number of protostars. Our simulations use the Orion adaptive mesh refinement code to follow the collapse from 60.1 pc scales to 610 AU scales, for durations that cover the main fragmentation phase, using three-dimensional gravito-radiation hydrodynamics. We find that for a wide range of initial conditions radiation feedback from accreting protostars inhibits the formation of fragments, so that the vast majority of the collapsed mass accretes onto one or a few objects. Most of the fragmentation that does occur takes place in massive, self-shielding disks. These are driven to gravitational instability by rapid accretion, producing rapid mass and angular momentum transport that allows most of the gas to accrete onto the central star rather than forming fragments. In contrast, a control run using the same initial conditions but an isothermal equation of state produces much more fragmentation, both in and out of the disk. We conclude that massive cores with observed properties are not likely to fragment into many stars, so that, at least at high masses, the core mass function probably determines the stellar initial mass function. Our results also demonstrate that simulations of massive star-forming regions that do not include radiative transfer, and instead rely on a barotropic equation of state or optically thin heating and cooling curves, are likely to produce misleading results.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.1086/510664</identifier><identifier>CODEN: ASJOAB</identifier><language>eng</language><publisher>Chicago, IL: IOP Publishing</publisher><subject>Astronomy ; Earth, ocean, space ; Exact sciences and technology</subject><ispartof>The Astrophysical journal, 2007-02, Vol.656 (2), p.959-979</ispartof><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-36e8e6a81b7432afcf8d93681bc74c4273a281a341bad8fd77ff0714b292c44a3</citedby><cites>FETCH-LOGICAL-c475t-36e8e6a81b7432afcf8d93681bc74c4273a281a341bad8fd77ff0714b292c44a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1086/510664/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27605,27901,27902,53906</link.rule.ids><linktorsrc>$$Uhttp://iopscience.iop.org/0004-637X/656/2/959$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18568685$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Krumholz, Mark R</creatorcontrib><creatorcontrib>Klein, Richard I</creatorcontrib><creatorcontrib>McKee, Christopher F</creatorcontrib><title>Radiation-Hydrodynamic Simulations of Collapse and Fragmentation in Massive Protostellar Cores</title><title>The Astrophysical journal</title><description>We simulate the early stages of the evolution of turbulent, virialized, high-mass protostellar cores, with primary attention to how cores fragment and whether they form a small or large number of protostars. Our simulations use the Orion adaptive mesh refinement code to follow the collapse from 60.1 pc scales to 610 AU scales, for durations that cover the main fragmentation phase, using three-dimensional gravito-radiation hydrodynamics. We find that for a wide range of initial conditions radiation feedback from accreting protostars inhibits the formation of fragments, so that the vast majority of the collapsed mass accretes onto one or a few objects. Most of the fragmentation that does occur takes place in massive, self-shielding disks. These are driven to gravitational instability by rapid accretion, producing rapid mass and angular momentum transport that allows most of the gas to accrete onto the central star rather than forming fragments. In contrast, a control run using the same initial conditions but an isothermal equation of state produces much more fragmentation, both in and out of the disk. We conclude that massive cores with observed properties are not likely to fragment into many stars, so that, at least at high masses, the core mass function probably determines the stellar initial mass function. Our results also demonstrate that simulations of massive star-forming regions that do not include radiative transfer, and instead rely on a barotropic equation of state or optically thin heating and cooling curves, are likely to produce misleading results.</description><subject>Astronomy</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp90d1LHDEQAPAgFjzP-jesD7YgrOY72cdyeFU4qfQD-mSYyyYS2d1sk73C_ffdvROFCj6FyfwyE2YQOiX4kmAtrwTBUvIDNCOC6ZIzoQ7RDGPMS8nU7yN0nPPTFNKqmqGH71AHGELsypttnWK97aANtvgR2k2zu89F9MUiNg302RXQ1cUywWPrumGXLkJX3EHO4a8r7lMcYh7caNP4JLl8gj54aLL7-HzO0a_l9c_FTbn69vV28WVVWq7EUDLptJOgyVpxRsFbr-uKyTG2iltOFQOqCTBO1lBrXyvlPVaEr2lFLefA5ujzvm6f4p-Ny4NpQ7bTRzoXN9mMZTmhFZaj_PSupJgJogl5hTbFnJPzpk-hhbQ1BJtp0GY_6BGeP1eEbKHxCTob8qvWQmqpxegu9i7E_iU7LcJMezFSSENNJSrT137EZ2_xf43_AXMElIQ</recordid><startdate>20070220</startdate><enddate>20070220</enddate><creator>Krumholz, Mark R</creator><creator>Klein, Richard I</creator><creator>McKee, Christopher F</creator><general>IOP Publishing</general><general>University of Chicago Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20070220</creationdate><title>Radiation-Hydrodynamic Simulations of Collapse and Fragmentation in Massive Protostellar Cores</title><author>Krumholz, Mark R ; Klein, Richard I ; McKee, Christopher F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-36e8e6a81b7432afcf8d93681bc74c4273a281a341bad8fd77ff0714b292c44a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Astronomy</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krumholz, Mark R</creatorcontrib><creatorcontrib>Klein, Richard I</creatorcontrib><creatorcontrib>McKee, Christopher F</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Krumholz, Mark R</au><au>Klein, Richard I</au><au>McKee, Christopher F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiation-Hydrodynamic Simulations of Collapse and Fragmentation in Massive Protostellar Cores</atitle><jtitle>The Astrophysical journal</jtitle><date>2007-02-20</date><risdate>2007</risdate><volume>656</volume><issue>2</issue><spage>959</spage><epage>979</epage><pages>959-979</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><coden>ASJOAB</coden><abstract>We simulate the early stages of the evolution of turbulent, virialized, high-mass protostellar cores, with primary attention to how cores fragment and whether they form a small or large number of protostars. Our simulations use the Orion adaptive mesh refinement code to follow the collapse from 60.1 pc scales to 610 AU scales, for durations that cover the main fragmentation phase, using three-dimensional gravito-radiation hydrodynamics. We find that for a wide range of initial conditions radiation feedback from accreting protostars inhibits the formation of fragments, so that the vast majority of the collapsed mass accretes onto one or a few objects. Most of the fragmentation that does occur takes place in massive, self-shielding disks. These are driven to gravitational instability by rapid accretion, producing rapid mass and angular momentum transport that allows most of the gas to accrete onto the central star rather than forming fragments. In contrast, a control run using the same initial conditions but an isothermal equation of state produces much more fragmentation, both in and out of the disk. We conclude that massive cores with observed properties are not likely to fragment into many stars, so that, at least at high masses, the core mass function probably determines the stellar initial mass function. Our results also demonstrate that simulations of massive star-forming regions that do not include radiative transfer, and instead rely on a barotropic equation of state or optically thin heating and cooling curves, are likely to produce misleading results.</abstract><cop>Chicago, IL</cop><pub>IOP Publishing</pub><doi>10.1086/510664</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2007-02, Vol.656 (2), p.959-979
issn 0004-637X
1538-4357
language eng
recordid cdi_proquest_miscellaneous_743412906
source IOP Publishing Free Content
subjects Astronomy
Earth, ocean, space
Exact sciences and technology
title Radiation-Hydrodynamic Simulations of Collapse and Fragmentation in Massive Protostellar Cores
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T16%3A21%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiation-Hydrodynamic%20Simulations%20of%20Collapse%20and%20Fragmentation%20in%20Massive%20Protostellar%20Cores&rft.jtitle=The%20Astrophysical%20journal&rft.au=Krumholz,%20Mark%20R&rft.date=2007-02-20&rft.volume=656&rft.issue=2&rft.spage=959&rft.epage=979&rft.pages=959-979&rft.issn=0004-637X&rft.eissn=1538-4357&rft.coden=ASJOAB&rft_id=info:doi/10.1086/510664&rft_dat=%3Cproquest_O3W%3E20351811%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20351811&rft_id=info:pmid/&rfr_iscdi=true