Quantitative equivalence between polymer nanocomposites and thin polymer films
The thermomechanical responses of polymers, which provide limitations to their practical use, are favourably altered by the addition of trace amounts of a nanofiller. However, the resulting changes in polymer properties are poorly understood, primarily due to the non-uniform spatial distribution of...
Gespeichert in:
Veröffentlicht in: | Nature materials 2005-09, Vol.4 (9), p.693-698 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 698 |
---|---|
container_issue | 9 |
container_start_page | 693 |
container_title | Nature materials |
container_volume | 4 |
creator | Bansal, Amitabh Yang, Hoichang Li, Chunzhao Cho, Kilwon Benicewicz, Brian C. Kumar, Sanat K. Schadler, Linda S. |
description | The thermomechanical responses of polymers, which provide limitations to their practical use, are favourably altered by the addition of trace amounts of a nanofiller. However, the resulting changes in polymer properties are poorly understood, primarily due to the non-uniform spatial distribution of nanoparticles. Here we show that the thermomechanical properties of ‘polymer nanocomposites’ are quantitatively equivalent to the well-documented case of planar polymer films. We quantify this equivalence by drawing a direct analogy between film thickness and an appropriate experimental interparticle spacing. We show that the changes in glass-transition temperature with decreasing interparticle spacing for two filler surface treatments are quantitatively equivalent to the corresponding thin-film data with a non-wetting and a wetting polymer–particle interface. Our results offer new insights into the role of confinement on the glass transition, and we conclude that the mere presence of regions of modified mobility in the vicinity of the particle surfaces, that is, a simple two-layer model, is insufficient to explain our results. Rather, we conjecture that the glass-transition process requires that the interphase regions surrounding different particles interact. |
doi_str_mv | 10.1038/nmat1447 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743402856</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68547711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-d2897b99223e6a08c91242750358237503af934be522eba5f75d54203b76a01f3</originalsourceid><addsrcrecordid>eNqF0UtLw0AQB_BFFFur4CeQ4MHHobrv3Ryl-IKiCHoOm2SiKckmzW4q_fZuaaWgoKeZZX7MMvwROib4imCmr21tPOFc7aAh4UqOuZR4d9MTQukAHTg3w5gSIeQ-GhCJtQyvIXp66Y31pTe-XEAE875cmApsBlEK_hPARm1TLWvoImtskzV127jSg4uMzSP_UW7nRVnV7hDtFaZycLSpI_R2d_s6eRhPn-8fJzfTccYV8eOc6lilcUwpA2mwzmJCOVUCM6EpW1VTxIynICiF1IhCiVxwilmqAicFG6Hz9d62a-Y9OJ_UpcugqoyFpneJ4oxjqoUM8uxPKbXgShHyL6QaK6mYDvD0B5w1fWfDuQml4QgeZEAXa5R1jXMdFEnblbXplgnBySqz5DuzQE82-_q0hnwLNyEFcLkGLozsO3TbD38t-wLVOp5s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222754280</pqid></control><display><type>article</type><title>Quantitative equivalence between polymer nanocomposites and thin polymer films</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Bansal, Amitabh ; Yang, Hoichang ; Li, Chunzhao ; Cho, Kilwon ; Benicewicz, Brian C. ; Kumar, Sanat K. ; Schadler, Linda S.</creator><creatorcontrib>Bansal, Amitabh ; Yang, Hoichang ; Li, Chunzhao ; Cho, Kilwon ; Benicewicz, Brian C. ; Kumar, Sanat K. ; Schadler, Linda S.</creatorcontrib><description>The thermomechanical responses of polymers, which provide limitations to their practical use, are favourably altered by the addition of trace amounts of a nanofiller. However, the resulting changes in polymer properties are poorly understood, primarily due to the non-uniform spatial distribution of nanoparticles. Here we show that the thermomechanical properties of ‘polymer nanocomposites’ are quantitatively equivalent to the well-documented case of planar polymer films. We quantify this equivalence by drawing a direct analogy between film thickness and an appropriate experimental interparticle spacing. We show that the changes in glass-transition temperature with decreasing interparticle spacing for two filler surface treatments are quantitatively equivalent to the corresponding thin-film data with a non-wetting and a wetting polymer–particle interface. Our results offer new insights into the role of confinement on the glass transition, and we conclude that the mere presence of regions of modified mobility in the vicinity of the particle surfaces, that is, a simple two-layer model, is insufficient to explain our results. Rather, we conjecture that the glass-transition process requires that the interphase regions surrounding different particles interact.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat1447</identifier><identifier>PMID: 16086021</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Biomaterials ; Chemistry and Materials Science ; Condensed Matter Physics ; Elasticity ; Manufactured Materials - analysis ; Materials Science ; Materials Testing ; Membranes, Artificial ; Nanostructures - chemistry ; Nanotechnology ; Nanotechnology - methods ; Optical and Electronic Materials ; Particle Size ; Phase Transition ; Polymers ; Polystyrenes - analysis ; Polystyrenes - chemistry ; Silicon Dioxide - chemistry ; Spatial distribution ; Temperature ; Thin films ; Transition Temperature ; Transition temperatures</subject><ispartof>Nature materials, 2005-09, Vol.4 (9), p.693-698</ispartof><rights>Springer Nature Limited 2005</rights><rights>Copyright Nature Publishing Group Sep 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-d2897b99223e6a08c91242750358237503af934be522eba5f75d54203b76a01f3</citedby><cites>FETCH-LOGICAL-c471t-d2897b99223e6a08c91242750358237503af934be522eba5f75d54203b76a01f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmat1447$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmat1447$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16086021$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bansal, Amitabh</creatorcontrib><creatorcontrib>Yang, Hoichang</creatorcontrib><creatorcontrib>Li, Chunzhao</creatorcontrib><creatorcontrib>Cho, Kilwon</creatorcontrib><creatorcontrib>Benicewicz, Brian C.</creatorcontrib><creatorcontrib>Kumar, Sanat K.</creatorcontrib><creatorcontrib>Schadler, Linda S.</creatorcontrib><title>Quantitative equivalence between polymer nanocomposites and thin polymer films</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>The thermomechanical responses of polymers, which provide limitations to their practical use, are favourably altered by the addition of trace amounts of a nanofiller. However, the resulting changes in polymer properties are poorly understood, primarily due to the non-uniform spatial distribution of nanoparticles. Here we show that the thermomechanical properties of ‘polymer nanocomposites’ are quantitatively equivalent to the well-documented case of planar polymer films. We quantify this equivalence by drawing a direct analogy between film thickness and an appropriate experimental interparticle spacing. We show that the changes in glass-transition temperature with decreasing interparticle spacing for two filler surface treatments are quantitatively equivalent to the corresponding thin-film data with a non-wetting and a wetting polymer–particle interface. Our results offer new insights into the role of confinement on the glass transition, and we conclude that the mere presence of regions of modified mobility in the vicinity of the particle surfaces, that is, a simple two-layer model, is insufficient to explain our results. Rather, we conjecture that the glass-transition process requires that the interphase regions surrounding different particles interact.</description><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Elasticity</subject><subject>Manufactured Materials - analysis</subject><subject>Materials Science</subject><subject>Materials Testing</subject><subject>Membranes, Artificial</subject><subject>Nanostructures - chemistry</subject><subject>Nanotechnology</subject><subject>Nanotechnology - methods</subject><subject>Optical and Electronic Materials</subject><subject>Particle Size</subject><subject>Phase Transition</subject><subject>Polymers</subject><subject>Polystyrenes - analysis</subject><subject>Polystyrenes - chemistry</subject><subject>Silicon Dioxide - chemistry</subject><subject>Spatial distribution</subject><subject>Temperature</subject><subject>Thin films</subject><subject>Transition Temperature</subject><subject>Transition temperatures</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqF0UtLw0AQB_BFFFur4CeQ4MHHobrv3Ryl-IKiCHoOm2SiKckmzW4q_fZuaaWgoKeZZX7MMvwROib4imCmr21tPOFc7aAh4UqOuZR4d9MTQukAHTg3w5gSIeQ-GhCJtQyvIXp66Y31pTe-XEAE875cmApsBlEK_hPARm1TLWvoImtskzV127jSg4uMzSP_UW7nRVnV7hDtFaZycLSpI_R2d_s6eRhPn-8fJzfTccYV8eOc6lilcUwpA2mwzmJCOVUCM6EpW1VTxIynICiF1IhCiVxwilmqAicFG6Hz9d62a-Y9OJ_UpcugqoyFpneJ4oxjqoUM8uxPKbXgShHyL6QaK6mYDvD0B5w1fWfDuQml4QgeZEAXa5R1jXMdFEnblbXplgnBySqz5DuzQE82-_q0hnwLNyEFcLkGLozsO3TbD38t-wLVOp5s</recordid><startdate>20050901</startdate><enddate>20050901</enddate><creator>Bansal, Amitabh</creator><creator>Yang, Hoichang</creator><creator>Li, Chunzhao</creator><creator>Cho, Kilwon</creator><creator>Benicewicz, Brian C.</creator><creator>Kumar, Sanat K.</creator><creator>Schadler, Linda S.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7U5</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20050901</creationdate><title>Quantitative equivalence between polymer nanocomposites and thin polymer films</title><author>Bansal, Amitabh ; Yang, Hoichang ; Li, Chunzhao ; Cho, Kilwon ; Benicewicz, Brian C. ; Kumar, Sanat K. ; Schadler, Linda S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-d2897b99223e6a08c91242750358237503af934be522eba5f75d54203b76a01f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Elasticity</topic><topic>Manufactured Materials - analysis</topic><topic>Materials Science</topic><topic>Materials Testing</topic><topic>Membranes, Artificial</topic><topic>Nanostructures - chemistry</topic><topic>Nanotechnology</topic><topic>Nanotechnology - methods</topic><topic>Optical and Electronic Materials</topic><topic>Particle Size</topic><topic>Phase Transition</topic><topic>Polymers</topic><topic>Polystyrenes - analysis</topic><topic>Polystyrenes - chemistry</topic><topic>Silicon Dioxide - chemistry</topic><topic>Spatial distribution</topic><topic>Temperature</topic><topic>Thin films</topic><topic>Transition Temperature</topic><topic>Transition temperatures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bansal, Amitabh</creatorcontrib><creatorcontrib>Yang, Hoichang</creatorcontrib><creatorcontrib>Li, Chunzhao</creatorcontrib><creatorcontrib>Cho, Kilwon</creatorcontrib><creatorcontrib>Benicewicz, Brian C.</creatorcontrib><creatorcontrib>Kumar, Sanat K.</creatorcontrib><creatorcontrib>Schadler, Linda S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bansal, Amitabh</au><au>Yang, Hoichang</au><au>Li, Chunzhao</au><au>Cho, Kilwon</au><au>Benicewicz, Brian C.</au><au>Kumar, Sanat K.</au><au>Schadler, Linda S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative equivalence between polymer nanocomposites and thin polymer films</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2005-09-01</date><risdate>2005</risdate><volume>4</volume><issue>9</issue><spage>693</spage><epage>698</epage><pages>693-698</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>The thermomechanical responses of polymers, which provide limitations to their practical use, are favourably altered by the addition of trace amounts of a nanofiller. However, the resulting changes in polymer properties are poorly understood, primarily due to the non-uniform spatial distribution of nanoparticles. Here we show that the thermomechanical properties of ‘polymer nanocomposites’ are quantitatively equivalent to the well-documented case of planar polymer films. We quantify this equivalence by drawing a direct analogy between film thickness and an appropriate experimental interparticle spacing. We show that the changes in glass-transition temperature with decreasing interparticle spacing for two filler surface treatments are quantitatively equivalent to the corresponding thin-film data with a non-wetting and a wetting polymer–particle interface. Our results offer new insights into the role of confinement on the glass transition, and we conclude that the mere presence of regions of modified mobility in the vicinity of the particle surfaces, that is, a simple two-layer model, is insufficient to explain our results. Rather, we conjecture that the glass-transition process requires that the interphase regions surrounding different particles interact.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>16086021</pmid><doi>10.1038/nmat1447</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2005-09, Vol.4 (9), p.693-698 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_proquest_miscellaneous_743402856 |
source | MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | Biomaterials Chemistry and Materials Science Condensed Matter Physics Elasticity Manufactured Materials - analysis Materials Science Materials Testing Membranes, Artificial Nanostructures - chemistry Nanotechnology Nanotechnology - methods Optical and Electronic Materials Particle Size Phase Transition Polymers Polystyrenes - analysis Polystyrenes - chemistry Silicon Dioxide - chemistry Spatial distribution Temperature Thin films Transition Temperature Transition temperatures |
title | Quantitative equivalence between polymer nanocomposites and thin polymer films |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T19%3A04%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20equivalence%20between%20polymer%20nanocomposites%20and%20thin%20polymer%20films&rft.jtitle=Nature%20materials&rft.au=Bansal,%20Amitabh&rft.date=2005-09-01&rft.volume=4&rft.issue=9&rft.spage=693&rft.epage=698&rft.pages=693-698&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat1447&rft_dat=%3Cproquest_cross%3E68547711%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222754280&rft_id=info:pmid/16086021&rfr_iscdi=true |