Quadrature-rule type approximations to the quasicontinuum method for long-range interatomic interactions

A quadrature-rule type method is presented to approximate the quasicontinuum method for atomistic mechanics. For both the short-range and long-range interaction cases, the complexity of this method depends on the number of representative particles but not on the total number of particles. Simple ana...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2010-01, Vol.199 (9), p.648-659
Hauptverfasser: Zhang, Yanzhi, Gunzburger, Max
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 659
container_issue 9
container_start_page 648
container_title Computer methods in applied mechanics and engineering
container_volume 199
creator Zhang, Yanzhi
Gunzburger, Max
description A quadrature-rule type method is presented to approximate the quasicontinuum method for atomistic mechanics. For both the short-range and long-range interaction cases, the complexity of this method depends on the number of representative particles but not on the total number of particles. Simple analysis and numerical experiments are provided to illustrate the accuracy and performance of the method. It is shown that, for the same accuracy, the quadrature-rule type method is much less costly than the quasicontinuum method.
doi_str_mv 10.1016/j.cma.2009.10.015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743400769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782509003600</els_id><sourcerecordid>743400769</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-c8e7ccaae7f29afe1af91e2253648129b046a06656f2230af0a7a0c1b977ee253</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKs_wF024mpqknlkBldSfIEggq7DbXrTpsxM2iQj9t-bPnBpNje5fPfknkPINWcTznh1t5roDiaCsSa9J4yXJ2TEa9lkguf1KRkxVpSZrEV5Ti5CWLF0ai5GZPkxwNxDHDxmfmiRxu0aKazX3v3YDqJ1faDR0bhEuhkgWO36aPth6GiHcenm1DhPW9cvMg_9AqntIyY911l9vOu9yCU5M9AGvDrWMfl6evycvmRv78-v04e3TOdlEzNdo9QaAKURDRjkYBqOQpR5VaSFmxkrKmBVVVZGiJyBYSCBaT5rpERM2JjcHnSTg82AIarOBo1tCz26IShZ5AVjsmoSyQ-k9i4Ej0atfbLst4oztQtVrVQKVe1C3bVSqGnm5qgOQUNrkmdtw9_gfs8qrxN3f-AwWf226FXQFnuNc-tRRzV39p9ffgFi5o8R</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>743400769</pqid></control><display><type>article</type><title>Quadrature-rule type approximations to the quasicontinuum method for long-range interatomic interactions</title><source>Elsevier ScienceDirect Journals</source><creator>Zhang, Yanzhi ; Gunzburger, Max</creator><creatorcontrib>Zhang, Yanzhi ; Gunzburger, Max</creatorcontrib><description>A quadrature-rule type method is presented to approximate the quasicontinuum method for atomistic mechanics. For both the short-range and long-range interaction cases, the complexity of this method depends on the number of representative particles but not on the total number of particles. Simple analysis and numerical experiments are provided to illustrate the accuracy and performance of the method. It is shown that, for the same accuracy, the quadrature-rule type method is much less costly than the quasicontinuum method.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2009.10.015</identifier><identifier>CODEN: CMMECC</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Atomistic models ; Computational techniques ; Coulomb potential ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Long-range interactions ; Mathematical methods in physics ; Physics ; Quadrature-rule type approximation ; Quasicontinuum method ; Solid mechanics ; Structural and continuum mechanics</subject><ispartof>Computer methods in applied mechanics and engineering, 2010-01, Vol.199 (9), p.648-659</ispartof><rights>2009 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-c8e7ccaae7f29afe1af91e2253648129b046a06656f2230af0a7a0c1b977ee253</citedby><cites>FETCH-LOGICAL-c359t-c8e7ccaae7f29afe1af91e2253648129b046a06656f2230af0a7a0c1b977ee253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045782509003600$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22536638$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Yanzhi</creatorcontrib><creatorcontrib>Gunzburger, Max</creatorcontrib><title>Quadrature-rule type approximations to the quasicontinuum method for long-range interatomic interactions</title><title>Computer methods in applied mechanics and engineering</title><description>A quadrature-rule type method is presented to approximate the quasicontinuum method for atomistic mechanics. For both the short-range and long-range interaction cases, the complexity of this method depends on the number of representative particles but not on the total number of particles. Simple analysis and numerical experiments are provided to illustrate the accuracy and performance of the method. It is shown that, for the same accuracy, the quadrature-rule type method is much less costly than the quasicontinuum method.</description><subject>Atomistic models</subject><subject>Computational techniques</subject><subject>Coulomb potential</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Long-range interactions</subject><subject>Mathematical methods in physics</subject><subject>Physics</subject><subject>Quadrature-rule type approximation</subject><subject>Quasicontinuum method</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKs_wF024mpqknlkBldSfIEggq7DbXrTpsxM2iQj9t-bPnBpNje5fPfknkPINWcTznh1t5roDiaCsSa9J4yXJ2TEa9lkguf1KRkxVpSZrEV5Ti5CWLF0ai5GZPkxwNxDHDxmfmiRxu0aKazX3v3YDqJ1faDR0bhEuhkgWO36aPth6GiHcenm1DhPW9cvMg_9AqntIyY911l9vOu9yCU5M9AGvDrWMfl6evycvmRv78-v04e3TOdlEzNdo9QaAKURDRjkYBqOQpR5VaSFmxkrKmBVVVZGiJyBYSCBaT5rpERM2JjcHnSTg82AIarOBo1tCz26IShZ5AVjsmoSyQ-k9i4Ej0atfbLst4oztQtVrVQKVe1C3bVSqGnm5qgOQUNrkmdtw9_gfs8qrxN3f-AwWf226FXQFnuNc-tRRzV39p9ffgFi5o8R</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Zhang, Yanzhi</creator><creator>Gunzburger, Max</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100101</creationdate><title>Quadrature-rule type approximations to the quasicontinuum method for long-range interatomic interactions</title><author>Zhang, Yanzhi ; Gunzburger, Max</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-c8e7ccaae7f29afe1af91e2253648129b046a06656f2230af0a7a0c1b977ee253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Atomistic models</topic><topic>Computational techniques</topic><topic>Coulomb potential</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Long-range interactions</topic><topic>Mathematical methods in physics</topic><topic>Physics</topic><topic>Quadrature-rule type approximation</topic><topic>Quasicontinuum method</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yanzhi</creatorcontrib><creatorcontrib>Gunzburger, Max</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yanzhi</au><au>Gunzburger, Max</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quadrature-rule type approximations to the quasicontinuum method for long-range interatomic interactions</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2010-01-01</date><risdate>2010</risdate><volume>199</volume><issue>9</issue><spage>648</spage><epage>659</epage><pages>648-659</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><coden>CMMECC</coden><abstract>A quadrature-rule type method is presented to approximate the quasicontinuum method for atomistic mechanics. For both the short-range and long-range interaction cases, the complexity of this method depends on the number of representative particles but not on the total number of particles. Simple analysis and numerical experiments are provided to illustrate the accuracy and performance of the method. It is shown that, for the same accuracy, the quadrature-rule type method is much less costly than the quasicontinuum method.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2009.10.015</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2010-01, Vol.199 (9), p.648-659
issn 0045-7825
1879-2138
language eng
recordid cdi_proquest_miscellaneous_743400769
source Elsevier ScienceDirect Journals
subjects Atomistic models
Computational techniques
Coulomb potential
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Long-range interactions
Mathematical methods in physics
Physics
Quadrature-rule type approximation
Quasicontinuum method
Solid mechanics
Structural and continuum mechanics
title Quadrature-rule type approximations to the quasicontinuum method for long-range interatomic interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A57%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quadrature-rule%20type%20approximations%20to%20the%20quasicontinuum%20method%20for%20long-range%20interatomic%20interactions&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Zhang,%20Yanzhi&rft.date=2010-01-01&rft.volume=199&rft.issue=9&rft.spage=648&rft.epage=659&rft.pages=648-659&rft.issn=0045-7825&rft.eissn=1879-2138&rft.coden=CMMECC&rft_id=info:doi/10.1016/j.cma.2009.10.015&rft_dat=%3Cproquest_cross%3E743400769%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=743400769&rft_id=info:pmid/&rft_els_id=S0045782509003600&rfr_iscdi=true