Optimization of specificity in a cellular protein interaction network by negative selection

Most proteins that participate in cellular signalling networks contain modular protein-interaction domains. Multiple versions of such domains are present within a given organism: the yeast proteome, for example, contains 27 different Src homology 3 (SH3) domains. This raises the potential problem of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature 2003-12, Vol.426 (6967), p.676-680
Hauptverfasser: Lim, Wendell A, Zarrinpar, Ali, Park, Sang-Hyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 680
container_issue 6967
container_start_page 676
container_title Nature
container_volume 426
creator Lim, Wendell A
Zarrinpar, Ali
Park, Sang-Hyun
description Most proteins that participate in cellular signalling networks contain modular protein-interaction domains. Multiple versions of such domains are present within a given organism: the yeast proteome, for example, contains 27 different Src homology 3 (SH3) domains. This raises the potential problem of cross-reaction. It is generally thought that isolated domain-ligand pairs lack sufficient information to encode biologically unique interactions, and that specificity is instead encoded by the context in which the interaction pairs are presented. Here we show that an isolated peptide ligand from the yeast protein Pbs2 recognizes its biological partner, the SH3 domain from Sho1, with near-absolute specificity-no other SH3 domain present in the yeast genome cross-reacts with the Pbs2 peptide, in vivo or in vitro. Such high specificity, however, is not observed in a set of non-yeast SH3 domains, and Pbs2 motif variants that cross-react with other SH3 domains confer a fitness defect, indicating that the Pbs2 motif might have been optimized to minimize interaction with competing domains specifically found in yeast. System-wide negative selection is a subtle but powerful evolutionary mechanism to optimize specificity within an interaction network composed of overlapping recognition elements.
doi_str_mv 10.1038/nature02178
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_743400107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A187811071</galeid><sourcerecordid>A187811071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c666t-8789d693f7cbe4187c6751192afd497f09c67b5473017b163c3af054f64586c93</originalsourceid><addsrcrecordid>eNqF0t9r1TAUB_AgirtOn3yXOlAR6UyaNEkfx_DHYDDwx5MPIc1NLplt2iWpev3rPVsv3ntlOPrQcvrJt8npQegpwccEU_k26DxFiysi5D20IEzwknEp7qMFxpUssaT8AD1K6RJjXBPBHqIDwjiXkssF-nYxZt_73zr7IRSDK9JojXfe-LwufCh0YWzXTZ2OxRiHbKHkQ7ZRm5sFweafQ_xetGt4XEHID1sk29mbt4_RA6e7ZJ9s7ofo6_t3X04_lucXH85OT85LwznPpRSyWfKGOmFay4gUhouakKbSbska4XADhbZmgmIiWsKpodrhmjnOaslNQw_RqzkXdng12ZRV79P1tnWww5SUYJRhTLAA-fL_kjBWc4nvhJVoKlFxfieEY1QMcwnw6B94OUwxQF9UhVlNKPwyQOWMVrqzygc3ZOj0ygZoeDcE6zyUT6BFksBxyDZ0z5vRX6lddHwLgmtpe29uTX29twBMtr_ySk8pqbPPn_btm9maOKQUrVNj9L2Oa0Wwuh5PtTOeoJ9tmjC1vV1u7WYeAbzYAJ2M7lzUwfi0dTVlVU1rcM9nN6f_Bbsf-wNZQvW1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204513687</pqid></control><display><type>article</type><title>Optimization of specificity in a cellular protein interaction network by negative selection</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Lim, Wendell A ; Zarrinpar, Ali ; Park, Sang-Hyun</creator><creatorcontrib>Lim, Wendell A ; Zarrinpar, Ali ; Park, Sang-Hyun</creatorcontrib><description>Most proteins that participate in cellular signalling networks contain modular protein-interaction domains. Multiple versions of such domains are present within a given organism: the yeast proteome, for example, contains 27 different Src homology 3 (SH3) domains. This raises the potential problem of cross-reaction. It is generally thought that isolated domain-ligand pairs lack sufficient information to encode biologically unique interactions, and that specificity is instead encoded by the context in which the interaction pairs are presented. Here we show that an isolated peptide ligand from the yeast protein Pbs2 recognizes its biological partner, the SH3 domain from Sho1, with near-absolute specificity-no other SH3 domain present in the yeast genome cross-reacts with the Pbs2 peptide, in vivo or in vitro. Such high specificity, however, is not observed in a set of non-yeast SH3 domains, and Pbs2 motif variants that cross-react with other SH3 domains confer a fitness defect, indicating that the Pbs2 motif might have been optimized to minimize interaction with competing domains specifically found in yeast. System-wide negative selection is a subtle but powerful evolutionary mechanism to optimize specificity within an interaction network composed of overlapping recognition elements.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature02178</identifier><identifier>PMID: 14668868</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing</publisher><subject>Amino Acid Motifs ; Amino Acid Sequence ; Binding, Competitive ; Biological and medical sciences ; cell signaling ; cell signalling ; Cellular biology ; Fundamental and applied biological sciences. Psychology ; Interactions. Associations ; Intermolecular phenomena ; Ligands ; Membrane Proteins - chemistry ; Membrane Proteins - metabolism ; Mitogen-Activated Protein Kinase Kinases - chemistry ; Mitogen-Activated Protein Kinase Kinases - metabolism ; Molecular biophysics ; Molecular Sequence Data ; Pbs2 protein ; Peptides ; Protein Binding ; protein interactions ; Proteins ; Proteome - chemistry ; Proteome - metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - metabolism ; Sho1 protein ; Species Specificity ; src Homology Domains ; Substrate Specificity ; Yeast ; Yeasts</subject><ispartof>Nature, 2003-12, Vol.426 (6967), p.676-680</ispartof><rights>2004 INIST-CNRS</rights><rights>COPYRIGHT 2003 Nature Publishing Group</rights><rights>Copyright Macmillan Journals Ltd. Dec 11, 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c666t-8789d693f7cbe4187c6751192afd497f09c67b5473017b163c3af054f64586c93</citedby><cites>FETCH-LOGICAL-c666t-8789d693f7cbe4187c6751192afd497f09c67b5473017b163c3af054f64586c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,2728,27929,27930</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15342535$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14668868$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lim, Wendell A</creatorcontrib><creatorcontrib>Zarrinpar, Ali</creatorcontrib><creatorcontrib>Park, Sang-Hyun</creatorcontrib><title>Optimization of specificity in a cellular protein interaction network by negative selection</title><title>Nature</title><addtitle>Nature</addtitle><description>Most proteins that participate in cellular signalling networks contain modular protein-interaction domains. Multiple versions of such domains are present within a given organism: the yeast proteome, for example, contains 27 different Src homology 3 (SH3) domains. This raises the potential problem of cross-reaction. It is generally thought that isolated domain-ligand pairs lack sufficient information to encode biologically unique interactions, and that specificity is instead encoded by the context in which the interaction pairs are presented. Here we show that an isolated peptide ligand from the yeast protein Pbs2 recognizes its biological partner, the SH3 domain from Sho1, with near-absolute specificity-no other SH3 domain present in the yeast genome cross-reacts with the Pbs2 peptide, in vivo or in vitro. Such high specificity, however, is not observed in a set of non-yeast SH3 domains, and Pbs2 motif variants that cross-react with other SH3 domains confer a fitness defect, indicating that the Pbs2 motif might have been optimized to minimize interaction with competing domains specifically found in yeast. System-wide negative selection is a subtle but powerful evolutionary mechanism to optimize specificity within an interaction network composed of overlapping recognition elements.</description><subject>Amino Acid Motifs</subject><subject>Amino Acid Sequence</subject><subject>Binding, Competitive</subject><subject>Biological and medical sciences</subject><subject>cell signaling</subject><subject>cell signalling</subject><subject>Cellular biology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Interactions. Associations</subject><subject>Intermolecular phenomena</subject><subject>Ligands</subject><subject>Membrane Proteins - chemistry</subject><subject>Membrane Proteins - metabolism</subject><subject>Mitogen-Activated Protein Kinase Kinases - chemistry</subject><subject>Mitogen-Activated Protein Kinase Kinases - metabolism</subject><subject>Molecular biophysics</subject><subject>Molecular Sequence Data</subject><subject>Pbs2 protein</subject><subject>Peptides</subject><subject>Protein Binding</subject><subject>protein interactions</subject><subject>Proteins</subject><subject>Proteome - chemistry</subject><subject>Proteome - metabolism</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Sho1 protein</subject><subject>Species Specificity</subject><subject>src Homology Domains</subject><subject>Substrate Specificity</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0t9r1TAUB_AgirtOn3yXOlAR6UyaNEkfx_DHYDDwx5MPIc1NLplt2iWpev3rPVsv3ntlOPrQcvrJt8npQegpwccEU_k26DxFiysi5D20IEzwknEp7qMFxpUssaT8AD1K6RJjXBPBHqIDwjiXkssF-nYxZt_73zr7IRSDK9JojXfe-LwufCh0YWzXTZ2OxRiHbKHkQ7ZRm5sFweafQ_xetGt4XEHID1sk29mbt4_RA6e7ZJ9s7ofo6_t3X04_lucXH85OT85LwznPpRSyWfKGOmFay4gUhouakKbSbska4XADhbZmgmIiWsKpodrhmjnOaslNQw_RqzkXdng12ZRV79P1tnWww5SUYJRhTLAA-fL_kjBWc4nvhJVoKlFxfieEY1QMcwnw6B94OUwxQF9UhVlNKPwyQOWMVrqzygc3ZOj0ygZoeDcE6zyUT6BFksBxyDZ0z5vRX6lddHwLgmtpe29uTX29twBMtr_ySk8pqbPPn_btm9maOKQUrVNj9L2Oa0Wwuh5PtTOeoJ9tmjC1vV1u7WYeAbzYAJ2M7lzUwfi0dTVlVU1rcM9nN6f_Bbsf-wNZQvW1</recordid><startdate>20031211</startdate><enddate>20031211</enddate><creator>Lim, Wendell A</creator><creator>Zarrinpar, Ali</creator><creator>Park, Sang-Hyun</creator><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20031211</creationdate><title>Optimization of specificity in a cellular protein interaction network by negative selection</title><author>Lim, Wendell A ; Zarrinpar, Ali ; Park, Sang-Hyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c666t-8789d693f7cbe4187c6751192afd497f09c67b5473017b163c3af054f64586c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Amino Acid Motifs</topic><topic>Amino Acid Sequence</topic><topic>Binding, Competitive</topic><topic>Biological and medical sciences</topic><topic>cell signaling</topic><topic>cell signalling</topic><topic>Cellular biology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Interactions. Associations</topic><topic>Intermolecular phenomena</topic><topic>Ligands</topic><topic>Membrane Proteins - chemistry</topic><topic>Membrane Proteins - metabolism</topic><topic>Mitogen-Activated Protein Kinase Kinases - chemistry</topic><topic>Mitogen-Activated Protein Kinase Kinases - metabolism</topic><topic>Molecular biophysics</topic><topic>Molecular Sequence Data</topic><topic>Pbs2 protein</topic><topic>Peptides</topic><topic>Protein Binding</topic><topic>protein interactions</topic><topic>Proteins</topic><topic>Proteome - chemistry</topic><topic>Proteome - metabolism</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Sho1 protein</topic><topic>Species Specificity</topic><topic>src Homology Domains</topic><topic>Substrate Specificity</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lim, Wendell A</creatorcontrib><creatorcontrib>Zarrinpar, Ali</creatorcontrib><creatorcontrib>Park, Sang-Hyun</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nature</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lim, Wendell A</au><au>Zarrinpar, Ali</au><au>Park, Sang-Hyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of specificity in a cellular protein interaction network by negative selection</atitle><jtitle>Nature</jtitle><addtitle>Nature</addtitle><date>2003-12-11</date><risdate>2003</risdate><volume>426</volume><issue>6967</issue><spage>676</spage><epage>680</epage><pages>676-680</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>Most proteins that participate in cellular signalling networks contain modular protein-interaction domains. Multiple versions of such domains are present within a given organism: the yeast proteome, for example, contains 27 different Src homology 3 (SH3) domains. This raises the potential problem of cross-reaction. It is generally thought that isolated domain-ligand pairs lack sufficient information to encode biologically unique interactions, and that specificity is instead encoded by the context in which the interaction pairs are presented. Here we show that an isolated peptide ligand from the yeast protein Pbs2 recognizes its biological partner, the SH3 domain from Sho1, with near-absolute specificity-no other SH3 domain present in the yeast genome cross-reacts with the Pbs2 peptide, in vivo or in vitro. Such high specificity, however, is not observed in a set of non-yeast SH3 domains, and Pbs2 motif variants that cross-react with other SH3 domains confer a fitness defect, indicating that the Pbs2 motif might have been optimized to minimize interaction with competing domains specifically found in yeast. System-wide negative selection is a subtle but powerful evolutionary mechanism to optimize specificity within an interaction network composed of overlapping recognition elements.</abstract><cop>London</cop><pub>Nature Publishing</pub><pmid>14668868</pmid><doi>10.1038/nature02178</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature, 2003-12, Vol.426 (6967), p.676-680
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_743400107
source MEDLINE; Nature; Alma/SFX Local Collection
subjects Amino Acid Motifs
Amino Acid Sequence
Binding, Competitive
Biological and medical sciences
cell signaling
cell signalling
Cellular biology
Fundamental and applied biological sciences. Psychology
Interactions. Associations
Intermolecular phenomena
Ligands
Membrane Proteins - chemistry
Membrane Proteins - metabolism
Mitogen-Activated Protein Kinase Kinases - chemistry
Mitogen-Activated Protein Kinase Kinases - metabolism
Molecular biophysics
Molecular Sequence Data
Pbs2 protein
Peptides
Protein Binding
protein interactions
Proteins
Proteome - chemistry
Proteome - metabolism
Saccharomyces cerevisiae
Saccharomyces cerevisiae Proteins - chemistry
Saccharomyces cerevisiae Proteins - metabolism
Sho1 protein
Species Specificity
src Homology Domains
Substrate Specificity
Yeast
Yeasts
title Optimization of specificity in a cellular protein interaction network by negative selection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T21%3A55%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20specificity%20in%20a%20cellular%20protein%20interaction%20network%20by%20negative%20selection&rft.jtitle=Nature&rft.au=Lim,%20Wendell%20A&rft.date=2003-12-11&rft.volume=426&rft.issue=6967&rft.spage=676&rft.epage=680&rft.pages=676-680&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature02178&rft_dat=%3Cgale_proqu%3EA187811071%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204513687&rft_id=info:pmid/14668868&rft_galeid=A187811071&rfr_iscdi=true