Optimization of specificity in a cellular protein interaction network by negative selection
Most proteins that participate in cellular signalling networks contain modular protein-interaction domains. Multiple versions of such domains are present within a given organism: the yeast proteome, for example, contains 27 different Src homology 3 (SH3) domains. This raises the potential problem of...
Gespeichert in:
Veröffentlicht in: | Nature 2003-12, Vol.426 (6967), p.676-680 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 680 |
---|---|
container_issue | 6967 |
container_start_page | 676 |
container_title | Nature |
container_volume | 426 |
creator | Lim, Wendell A Zarrinpar, Ali Park, Sang-Hyun |
description | Most proteins that participate in cellular signalling networks contain modular protein-interaction domains. Multiple versions of such domains are present within a given organism: the yeast proteome, for example, contains 27 different Src homology 3 (SH3) domains. This raises the potential problem of cross-reaction. It is generally thought that isolated domain-ligand pairs lack sufficient information to encode biologically unique interactions, and that specificity is instead encoded by the context in which the interaction pairs are presented. Here we show that an isolated peptide ligand from the yeast protein Pbs2 recognizes its biological partner, the SH3 domain from Sho1, with near-absolute specificity-no other SH3 domain present in the yeast genome cross-reacts with the Pbs2 peptide, in vivo or in vitro. Such high specificity, however, is not observed in a set of non-yeast SH3 domains, and Pbs2 motif variants that cross-react with other SH3 domains confer a fitness defect, indicating that the Pbs2 motif might have been optimized to minimize interaction with competing domains specifically found in yeast. System-wide negative selection is a subtle but powerful evolutionary mechanism to optimize specificity within an interaction network composed of overlapping recognition elements. |
doi_str_mv | 10.1038/nature02178 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_743400107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A187811071</galeid><sourcerecordid>A187811071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c666t-8789d693f7cbe4187c6751192afd497f09c67b5473017b163c3af054f64586c93</originalsourceid><addsrcrecordid>eNqF0t9r1TAUB_AgirtOn3yXOlAR6UyaNEkfx_DHYDDwx5MPIc1NLplt2iWpev3rPVsv3ntlOPrQcvrJt8npQegpwccEU_k26DxFiysi5D20IEzwknEp7qMFxpUssaT8AD1K6RJjXBPBHqIDwjiXkssF-nYxZt_73zr7IRSDK9JojXfe-LwufCh0YWzXTZ2OxRiHbKHkQ7ZRm5sFweafQ_xetGt4XEHID1sk29mbt4_RA6e7ZJ9s7ofo6_t3X04_lucXH85OT85LwznPpRSyWfKGOmFay4gUhouakKbSbska4XADhbZmgmIiWsKpodrhmjnOaslNQw_RqzkXdng12ZRV79P1tnWww5SUYJRhTLAA-fL_kjBWc4nvhJVoKlFxfieEY1QMcwnw6B94OUwxQF9UhVlNKPwyQOWMVrqzygc3ZOj0ygZoeDcE6zyUT6BFksBxyDZ0z5vRX6lddHwLgmtpe29uTX29twBMtr_ySk8pqbPPn_btm9maOKQUrVNj9L2Oa0Wwuh5PtTOeoJ9tmjC1vV1u7WYeAbzYAJ2M7lzUwfi0dTVlVU1rcM9nN6f_Bbsf-wNZQvW1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204513687</pqid></control><display><type>article</type><title>Optimization of specificity in a cellular protein interaction network by negative selection</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Lim, Wendell A ; Zarrinpar, Ali ; Park, Sang-Hyun</creator><creatorcontrib>Lim, Wendell A ; Zarrinpar, Ali ; Park, Sang-Hyun</creatorcontrib><description>Most proteins that participate in cellular signalling networks contain modular protein-interaction domains. Multiple versions of such domains are present within a given organism: the yeast proteome, for example, contains 27 different Src homology 3 (SH3) domains. This raises the potential problem of cross-reaction. It is generally thought that isolated domain-ligand pairs lack sufficient information to encode biologically unique interactions, and that specificity is instead encoded by the context in which the interaction pairs are presented. Here we show that an isolated peptide ligand from the yeast protein Pbs2 recognizes its biological partner, the SH3 domain from Sho1, with near-absolute specificity-no other SH3 domain present in the yeast genome cross-reacts with the Pbs2 peptide, in vivo or in vitro. Such high specificity, however, is not observed in a set of non-yeast SH3 domains, and Pbs2 motif variants that cross-react with other SH3 domains confer a fitness defect, indicating that the Pbs2 motif might have been optimized to minimize interaction with competing domains specifically found in yeast. System-wide negative selection is a subtle but powerful evolutionary mechanism to optimize specificity within an interaction network composed of overlapping recognition elements.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature02178</identifier><identifier>PMID: 14668868</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing</publisher><subject>Amino Acid Motifs ; Amino Acid Sequence ; Binding, Competitive ; Biological and medical sciences ; cell signaling ; cell signalling ; Cellular biology ; Fundamental and applied biological sciences. Psychology ; Interactions. Associations ; Intermolecular phenomena ; Ligands ; Membrane Proteins - chemistry ; Membrane Proteins - metabolism ; Mitogen-Activated Protein Kinase Kinases - chemistry ; Mitogen-Activated Protein Kinase Kinases - metabolism ; Molecular biophysics ; Molecular Sequence Data ; Pbs2 protein ; Peptides ; Protein Binding ; protein interactions ; Proteins ; Proteome - chemistry ; Proteome - metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - metabolism ; Sho1 protein ; Species Specificity ; src Homology Domains ; Substrate Specificity ; Yeast ; Yeasts</subject><ispartof>Nature, 2003-12, Vol.426 (6967), p.676-680</ispartof><rights>2004 INIST-CNRS</rights><rights>COPYRIGHT 2003 Nature Publishing Group</rights><rights>Copyright Macmillan Journals Ltd. Dec 11, 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c666t-8789d693f7cbe4187c6751192afd497f09c67b5473017b163c3af054f64586c93</citedby><cites>FETCH-LOGICAL-c666t-8789d693f7cbe4187c6751192afd497f09c67b5473017b163c3af054f64586c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,2728,27929,27930</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15342535$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14668868$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lim, Wendell A</creatorcontrib><creatorcontrib>Zarrinpar, Ali</creatorcontrib><creatorcontrib>Park, Sang-Hyun</creatorcontrib><title>Optimization of specificity in a cellular protein interaction network by negative selection</title><title>Nature</title><addtitle>Nature</addtitle><description>Most proteins that participate in cellular signalling networks contain modular protein-interaction domains. Multiple versions of such domains are present within a given organism: the yeast proteome, for example, contains 27 different Src homology 3 (SH3) domains. This raises the potential problem of cross-reaction. It is generally thought that isolated domain-ligand pairs lack sufficient information to encode biologically unique interactions, and that specificity is instead encoded by the context in which the interaction pairs are presented. Here we show that an isolated peptide ligand from the yeast protein Pbs2 recognizes its biological partner, the SH3 domain from Sho1, with near-absolute specificity-no other SH3 domain present in the yeast genome cross-reacts with the Pbs2 peptide, in vivo or in vitro. Such high specificity, however, is not observed in a set of non-yeast SH3 domains, and Pbs2 motif variants that cross-react with other SH3 domains confer a fitness defect, indicating that the Pbs2 motif might have been optimized to minimize interaction with competing domains specifically found in yeast. System-wide negative selection is a subtle but powerful evolutionary mechanism to optimize specificity within an interaction network composed of overlapping recognition elements.</description><subject>Amino Acid Motifs</subject><subject>Amino Acid Sequence</subject><subject>Binding, Competitive</subject><subject>Biological and medical sciences</subject><subject>cell signaling</subject><subject>cell signalling</subject><subject>Cellular biology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Interactions. Associations</subject><subject>Intermolecular phenomena</subject><subject>Ligands</subject><subject>Membrane Proteins - chemistry</subject><subject>Membrane Proteins - metabolism</subject><subject>Mitogen-Activated Protein Kinase Kinases - chemistry</subject><subject>Mitogen-Activated Protein Kinase Kinases - metabolism</subject><subject>Molecular biophysics</subject><subject>Molecular Sequence Data</subject><subject>Pbs2 protein</subject><subject>Peptides</subject><subject>Protein Binding</subject><subject>protein interactions</subject><subject>Proteins</subject><subject>Proteome - chemistry</subject><subject>Proteome - metabolism</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Sho1 protein</subject><subject>Species Specificity</subject><subject>src Homology Domains</subject><subject>Substrate Specificity</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0t9r1TAUB_AgirtOn3yXOlAR6UyaNEkfx_DHYDDwx5MPIc1NLplt2iWpev3rPVsv3ntlOPrQcvrJt8npQegpwccEU_k26DxFiysi5D20IEzwknEp7qMFxpUssaT8AD1K6RJjXBPBHqIDwjiXkssF-nYxZt_73zr7IRSDK9JojXfe-LwufCh0YWzXTZ2OxRiHbKHkQ7ZRm5sFweafQ_xetGt4XEHID1sk29mbt4_RA6e7ZJ9s7ofo6_t3X04_lucXH85OT85LwznPpRSyWfKGOmFay4gUhouakKbSbska4XADhbZmgmIiWsKpodrhmjnOaslNQw_RqzkXdng12ZRV79P1tnWww5SUYJRhTLAA-fL_kjBWc4nvhJVoKlFxfieEY1QMcwnw6B94OUwxQF9UhVlNKPwyQOWMVrqzygc3ZOj0ygZoeDcE6zyUT6BFksBxyDZ0z5vRX6lddHwLgmtpe29uTX29twBMtr_ySk8pqbPPn_btm9maOKQUrVNj9L2Oa0Wwuh5PtTOeoJ9tmjC1vV1u7WYeAbzYAJ2M7lzUwfi0dTVlVU1rcM9nN6f_Bbsf-wNZQvW1</recordid><startdate>20031211</startdate><enddate>20031211</enddate><creator>Lim, Wendell A</creator><creator>Zarrinpar, Ali</creator><creator>Park, Sang-Hyun</creator><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20031211</creationdate><title>Optimization of specificity in a cellular protein interaction network by negative selection</title><author>Lim, Wendell A ; Zarrinpar, Ali ; Park, Sang-Hyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c666t-8789d693f7cbe4187c6751192afd497f09c67b5473017b163c3af054f64586c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Amino Acid Motifs</topic><topic>Amino Acid Sequence</topic><topic>Binding, Competitive</topic><topic>Biological and medical sciences</topic><topic>cell signaling</topic><topic>cell signalling</topic><topic>Cellular biology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Interactions. Associations</topic><topic>Intermolecular phenomena</topic><topic>Ligands</topic><topic>Membrane Proteins - chemistry</topic><topic>Membrane Proteins - metabolism</topic><topic>Mitogen-Activated Protein Kinase Kinases - chemistry</topic><topic>Mitogen-Activated Protein Kinase Kinases - metabolism</topic><topic>Molecular biophysics</topic><topic>Molecular Sequence Data</topic><topic>Pbs2 protein</topic><topic>Peptides</topic><topic>Protein Binding</topic><topic>protein interactions</topic><topic>Proteins</topic><topic>Proteome - chemistry</topic><topic>Proteome - metabolism</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Sho1 protein</topic><topic>Species Specificity</topic><topic>src Homology Domains</topic><topic>Substrate Specificity</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lim, Wendell A</creatorcontrib><creatorcontrib>Zarrinpar, Ali</creatorcontrib><creatorcontrib>Park, Sang-Hyun</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nature</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lim, Wendell A</au><au>Zarrinpar, Ali</au><au>Park, Sang-Hyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of specificity in a cellular protein interaction network by negative selection</atitle><jtitle>Nature</jtitle><addtitle>Nature</addtitle><date>2003-12-11</date><risdate>2003</risdate><volume>426</volume><issue>6967</issue><spage>676</spage><epage>680</epage><pages>676-680</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>Most proteins that participate in cellular signalling networks contain modular protein-interaction domains. Multiple versions of such domains are present within a given organism: the yeast proteome, for example, contains 27 different Src homology 3 (SH3) domains. This raises the potential problem of cross-reaction. It is generally thought that isolated domain-ligand pairs lack sufficient information to encode biologically unique interactions, and that specificity is instead encoded by the context in which the interaction pairs are presented. Here we show that an isolated peptide ligand from the yeast protein Pbs2 recognizes its biological partner, the SH3 domain from Sho1, with near-absolute specificity-no other SH3 domain present in the yeast genome cross-reacts with the Pbs2 peptide, in vivo or in vitro. Such high specificity, however, is not observed in a set of non-yeast SH3 domains, and Pbs2 motif variants that cross-react with other SH3 domains confer a fitness defect, indicating that the Pbs2 motif might have been optimized to minimize interaction with competing domains specifically found in yeast. System-wide negative selection is a subtle but powerful evolutionary mechanism to optimize specificity within an interaction network composed of overlapping recognition elements.</abstract><cop>London</cop><pub>Nature Publishing</pub><pmid>14668868</pmid><doi>10.1038/nature02178</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature, 2003-12, Vol.426 (6967), p.676-680 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_743400107 |
source | MEDLINE; Nature; Alma/SFX Local Collection |
subjects | Amino Acid Motifs Amino Acid Sequence Binding, Competitive Biological and medical sciences cell signaling cell signalling Cellular biology Fundamental and applied biological sciences. Psychology Interactions. Associations Intermolecular phenomena Ligands Membrane Proteins - chemistry Membrane Proteins - metabolism Mitogen-Activated Protein Kinase Kinases - chemistry Mitogen-Activated Protein Kinase Kinases - metabolism Molecular biophysics Molecular Sequence Data Pbs2 protein Peptides Protein Binding protein interactions Proteins Proteome - chemistry Proteome - metabolism Saccharomyces cerevisiae Saccharomyces cerevisiae Proteins - chemistry Saccharomyces cerevisiae Proteins - metabolism Sho1 protein Species Specificity src Homology Domains Substrate Specificity Yeast Yeasts |
title | Optimization of specificity in a cellular protein interaction network by negative selection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T21%3A55%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20specificity%20in%20a%20cellular%20protein%20interaction%20network%20by%20negative%20selection&rft.jtitle=Nature&rft.au=Lim,%20Wendell%20A&rft.date=2003-12-11&rft.volume=426&rft.issue=6967&rft.spage=676&rft.epage=680&rft.pages=676-680&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature02178&rft_dat=%3Cgale_proqu%3EA187811071%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204513687&rft_id=info:pmid/14668868&rft_galeid=A187811071&rfr_iscdi=true |