Shewhart-type control charts for variation in phase I data analysis

Control charts for variation play a key role in the overall statistical process control (SPC) regime. We study the popular Shewhart-type S 2 , S and R control charts when the mean and the variance of a normally distributed process are both unknown and are estimated from m independent samples (subgro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational statistics & data analysis 2010-04, Vol.54 (4), p.863-874
Hauptverfasser: Human, S.W., Chakraborti, S., Smit, C.F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 874
container_issue 4
container_start_page 863
container_title Computational statistics & data analysis
container_volume 54
creator Human, S.W.
Chakraborti, S.
Smit, C.F.
description Control charts for variation play a key role in the overall statistical process control (SPC) regime. We study the popular Shewhart-type S 2 , S and R control charts when the mean and the variance of a normally distributed process are both unknown and are estimated from m independent samples (subgroups) each of size n . This is the Phase I setting. Current uses of these charts do not recognize that in this setting the signalling events are statistically dependent and that m comparisons are made with the same control limits simultaneously. These are important issues because they affect the design and the performance of the control charts. The proposed methodology addresses these issues (which leads to working with the joint distribution of a set of dependent random variables) by calculating the correct control limits, so that the false alarm probability ( FAP), defined as the probability of at least one false alarm, is at most equal to some given nominal value F A P 0 . To aid practical implementation, tables are provided for the charting constants for each Phase I chart, for an F A P 0 of 0.01 and 0.05, respectively. An illustrative example is given.
doi_str_mv 10.1016/j.csda.2009.09.026
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743393063</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167947309003569</els_id><sourcerecordid>743393063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-13d966695b6970671543bee725417b88770487d575ac9ee8a1619e8d27b4627d3</originalsourceid><addsrcrecordid>eNp9kEtrGzEUhUVpoW6aP9CVNqWrcfQaPSCbYvIk0EWTtbjWXGOZ8cxEUhz876PBIcvAPRJcvnO4HEJ-cbbkjOuL3TLkDpaCMbecR-gvZMGtEY2RrfhKFhUyjVNGfic_ct4xxoQydkFW_7f4uoVUmnKckIZxKGnsaZhXmW7GRA-QIpQ4DjQOdNpCRnpHOyhAYYD-mGP-Sb5toM94_v6fkafrq8fVbfPw7-Zu9fehCUq40nDZOa21a9faGaYNb5VcIxrRKm7W1hrDlDVda1oIDtEC19yh7YRZKy1MJ8_In1PulMbnF8zF72MO2Pcw4PiSvVFSOsm0rKQ4kSGNOSfc-CnFPaSj58zPhfmdnwvzc2F-HqGr6f5kSjhh-HAg4owO4A9eQqvqc6wSrEZJiFXzaqqyWnprlN-WfQ37_X4r5AD9JsEQYv4IFaJ1VlhbucsTh7W4Q8Tkc4g4BOxiwlB8N8bPbn4DG_mYdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>743393063</pqid></control><display><type>article</type><title>Shewhart-type control charts for variation in phase I data analysis</title><source>RePEc</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Human, S.W. ; Chakraborti, S. ; Smit, C.F.</creator><creatorcontrib>Human, S.W. ; Chakraborti, S. ; Smit, C.F.</creatorcontrib><description>Control charts for variation play a key role in the overall statistical process control (SPC) regime. We study the popular Shewhart-type S 2 , S and R control charts when the mean and the variance of a normally distributed process are both unknown and are estimated from m independent samples (subgroups) each of size n . This is the Phase I setting. Current uses of these charts do not recognize that in this setting the signalling events are statistically dependent and that m comparisons are made with the same control limits simultaneously. These are important issues because they affect the design and the performance of the control charts. The proposed methodology addresses these issues (which leads to working with the joint distribution of a set of dependent random variables) by calculating the correct control limits, so that the false alarm probability ( FAP), defined as the probability of at least one false alarm, is at most equal to some given nominal value F A P 0 . To aid practical implementation, tables are provided for the charting constants for each Phase I chart, for an F A P 0 of 0.01 and 0.05, respectively. An illustrative example is given.</description><identifier>ISSN: 0167-9473</identifier><identifier>EISSN: 1872-7352</identifier><identifier>DOI: 10.1016/j.csda.2009.09.026</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applications ; Exact sciences and technology ; General topics ; Mathematics ; Multivariate analysis ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical methods in probability and statistics ; Probability and statistics ; Reliability, life testing, quality control ; Sciences and techniques of general use ; Statistics</subject><ispartof>Computational statistics &amp; data analysis, 2010-04, Vol.54 (4), p.863-874</ispartof><rights>2009 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-13d966695b6970671543bee725417b88770487d575ac9ee8a1619e8d27b4627d3</citedby><cites>FETCH-LOGICAL-c429t-13d966695b6970671543bee725417b88770487d575ac9ee8a1619e8d27b4627d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.csda.2009.09.026$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,3994,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22598288$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeecsdana/v_3a54_3ay_3a2010_3ai_3a4_3ap_3a863-874.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Human, S.W.</creatorcontrib><creatorcontrib>Chakraborti, S.</creatorcontrib><creatorcontrib>Smit, C.F.</creatorcontrib><title>Shewhart-type control charts for variation in phase I data analysis</title><title>Computational statistics &amp; data analysis</title><description>Control charts for variation play a key role in the overall statistical process control (SPC) regime. We study the popular Shewhart-type S 2 , S and R control charts when the mean and the variance of a normally distributed process are both unknown and are estimated from m independent samples (subgroups) each of size n . This is the Phase I setting. Current uses of these charts do not recognize that in this setting the signalling events are statistically dependent and that m comparisons are made with the same control limits simultaneously. These are important issues because they affect the design and the performance of the control charts. The proposed methodology addresses these issues (which leads to working with the joint distribution of a set of dependent random variables) by calculating the correct control limits, so that the false alarm probability ( FAP), defined as the probability of at least one false alarm, is at most equal to some given nominal value F A P 0 . To aid practical implementation, tables are provided for the charting constants for each Phase I chart, for an F A P 0 of 0.01 and 0.05, respectively. An illustrative example is given.</description><subject>Applications</subject><subject>Exact sciences and technology</subject><subject>General topics</subject><subject>Mathematics</subject><subject>Multivariate analysis</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical methods in probability and statistics</subject><subject>Probability and statistics</subject><subject>Reliability, life testing, quality control</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><issn>0167-9473</issn><issn>1872-7352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNp9kEtrGzEUhUVpoW6aP9CVNqWrcfQaPSCbYvIk0EWTtbjWXGOZ8cxEUhz876PBIcvAPRJcvnO4HEJ-cbbkjOuL3TLkDpaCMbecR-gvZMGtEY2RrfhKFhUyjVNGfic_ct4xxoQydkFW_7f4uoVUmnKckIZxKGnsaZhXmW7GRA-QIpQ4DjQOdNpCRnpHOyhAYYD-mGP-Sb5toM94_v6fkafrq8fVbfPw7-Zu9fehCUq40nDZOa21a9faGaYNb5VcIxrRKm7W1hrDlDVda1oIDtEC19yh7YRZKy1MJ8_In1PulMbnF8zF72MO2Pcw4PiSvVFSOsm0rKQ4kSGNOSfc-CnFPaSj58zPhfmdnwvzc2F-HqGr6f5kSjhh-HAg4owO4A9eQqvqc6wSrEZJiFXzaqqyWnprlN-WfQ37_X4r5AD9JsEQYv4IFaJ1VlhbucsTh7W4Q8Tkc4g4BOxiwlB8N8bPbn4DG_mYdw</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Human, S.W.</creator><creator>Chakraborti, S.</creator><creator>Smit, C.F.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100401</creationdate><title>Shewhart-type control charts for variation in phase I data analysis</title><author>Human, S.W. ; Chakraborti, S. ; Smit, C.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-13d966695b6970671543bee725417b88770487d575ac9ee8a1619e8d27b4627d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applications</topic><topic>Exact sciences and technology</topic><topic>General topics</topic><topic>Mathematics</topic><topic>Multivariate analysis</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical methods in probability and statistics</topic><topic>Probability and statistics</topic><topic>Reliability, life testing, quality control</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Human, S.W.</creatorcontrib><creatorcontrib>Chakraborti, S.</creatorcontrib><creatorcontrib>Smit, C.F.</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational statistics &amp; data analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Human, S.W.</au><au>Chakraborti, S.</au><au>Smit, C.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shewhart-type control charts for variation in phase I data analysis</atitle><jtitle>Computational statistics &amp; data analysis</jtitle><date>2010-04-01</date><risdate>2010</risdate><volume>54</volume><issue>4</issue><spage>863</spage><epage>874</epage><pages>863-874</pages><issn>0167-9473</issn><eissn>1872-7352</eissn><abstract>Control charts for variation play a key role in the overall statistical process control (SPC) regime. We study the popular Shewhart-type S 2 , S and R control charts when the mean and the variance of a normally distributed process are both unknown and are estimated from m independent samples (subgroups) each of size n . This is the Phase I setting. Current uses of these charts do not recognize that in this setting the signalling events are statistically dependent and that m comparisons are made with the same control limits simultaneously. These are important issues because they affect the design and the performance of the control charts. The proposed methodology addresses these issues (which leads to working with the joint distribution of a set of dependent random variables) by calculating the correct control limits, so that the false alarm probability ( FAP), defined as the probability of at least one false alarm, is at most equal to some given nominal value F A P 0 . To aid practical implementation, tables are provided for the charting constants for each Phase I chart, for an F A P 0 of 0.01 and 0.05, respectively. An illustrative example is given.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.csda.2009.09.026</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-9473
ispartof Computational statistics & data analysis, 2010-04, Vol.54 (4), p.863-874
issn 0167-9473
1872-7352
language eng
recordid cdi_proquest_miscellaneous_743393063
source RePEc; Elsevier ScienceDirect Journals Complete
subjects Applications
Exact sciences and technology
General topics
Mathematics
Multivariate analysis
Numerical analysis
Numerical analysis. Scientific computation
Numerical methods in probability and statistics
Probability and statistics
Reliability, life testing, quality control
Sciences and techniques of general use
Statistics
title Shewhart-type control charts for variation in phase I data analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T15%3A10%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shewhart-type%20control%20charts%20for%20variation%20in%20phase%20I%20data%20analysis&rft.jtitle=Computational%20statistics%20&%20data%20analysis&rft.au=Human,%20S.W.&rft.date=2010-04-01&rft.volume=54&rft.issue=4&rft.spage=863&rft.epage=874&rft.pages=863-874&rft.issn=0167-9473&rft.eissn=1872-7352&rft_id=info:doi/10.1016/j.csda.2009.09.026&rft_dat=%3Cproquest_cross%3E743393063%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=743393063&rft_id=info:pmid/&rft_els_id=S0167947309003569&rfr_iscdi=true