Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria
Digging deep for bacteria Sediments beneath the seafloor do not sound a promising habitat, yet it has been estimated from microscopic cell counts that sub-seafloor sediments account for over half of all eukaryotic cells on Earth. That figure does not differentiate live cells from dead, but a new stu...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2005-02, Vol.433 (7028), p.861-864 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 864 |
---|---|
container_issue | 7028 |
container_start_page | 861 |
container_title | Nature (London) |
container_volume | 433 |
creator | Schippers, Axel Neretin, Lev N. Kallmeyer, Jens Ferdelman, Timothy G. Cragg, Barry A. John Parkes, R. Jørgensen, Bo B. |
description | Digging deep for bacteria
Sediments beneath the seafloor do not sound a promising habitat, yet it has been estimated from microscopic cell counts that sub-seafloor sediments account for over half of all eukaryotic cells on Earth. That figure does not differentiate live cells from dead, but a new study based on ribosomal RNA detection does. The data suggest that many of the cells are alive, even in 16-million-year-old sediments 400 metres beneath the seabed. All the detectable living cells are bacteria, and they seem to be thriving as they have a turnover rate comparable with those seen in surface sediments.
Chemical analyses of the pore waters from hundreds of deep ocean sediment cores have over decades provided evidence for ongoing processes that require biological catalysis by prokaryotes
1
,
2
,
3
. This sub-seafloor activity of microorganisms may influence the surface Earth by changing the chemistry of the ocean and by triggering the emission of methane, with consequences for the marine carbon cycle and even the global climate
4
,
5
,
6
. Despite the fact that only about 1% of the total marine primary production of organic carbon is available for deep-sea microorganisms
7
,
8
, sub-seafloor sediments harbour over half of all prokaryotic cells on Earth
7
. This estimation has been calculated from numerous microscopic cell counts in sediment cores of the Ocean Drilling Program
1
,
9
. Because these counts cannot differentiate between dead and alive cells, the population size of living microorganisms is unknown
10
,
11
. Here, using ribosomal RNA as a target for the technique known as catalysed reporter deposition-fluorescence
in situ
hybridization (CARD-FISH), we provide direct quantification of live cells as defined by the presence of ribosomes. We show that a large fraction of the sub-seafloor prokaryotes is alive, even in very old (16 million yr) and deep (> 400 m) sediments. All detectable living cells belong to the Bacteria and have turnover times of 0.25–22 yr, comparable to surface sediments. |
doi_str_mv | 10.1038/nature03302 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_743389781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A185471840</galeid><sourcerecordid>A185471840</sourcerecordid><originalsourceid>FETCH-LOGICAL-a677t-c51f3e75ee48c51b4d6838a5e8bca4d8943dadee7a8a75c6dc4f56809e8c61153</originalsourceid><addsrcrecordid>eNqF0s1rFDEYB-Agil2rJ-8yeKiITk0mn3NcFj8KRaVWPIZM5p1p6uxkmmRE_3tTdmG7sio5JCRPfuQNL0JPCT4lmKo3o0lzAEwpru6hBWFSlEwoeR8tMK5UiRUVR-hRjNcYY04ke4iOCJdVTRlZoIvPwX834ZdPzhYWhiEWvivSFRQtwFTEuSkjmG7wPhSN83G6ggCFa2FMrnPQFiYWg_vhxr5ojE0QnHmMHnRmiPBkOx-jr-_eXq4-lOef3p-tluelEVKm0nLSUZAcgKm8blgrFFWGg2qsYa2qGW1NfoQ0ykhuRWtZx4XCNSgrCOH0GL3Y5E7B38wQk167eFuCGcHPUUtGqaqlIlme_FMKyXiNK_5fSKRkSlUqw-d_wGs_hzGXqyvMuKCcyozKDerNANqNnU_B2B5GCGbwI3Quby-J4kwSxfAudM_byd3ou-j0AMqjhbWzB1Nf7l3IJsHP1Js5Rn325WLfvvq7XV5-W308qG3wMQbo9BTcOjeTJljftqa-05pZP9t-2dysod3ZbS9m8HoDYj4aewi7Pz2U9xuzZOqd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204563537</pqid></control><display><type>article</type><title>Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Schippers, Axel ; Neretin, Lev N. ; Kallmeyer, Jens ; Ferdelman, Timothy G. ; Cragg, Barry A. ; John Parkes, R. ; Jørgensen, Bo B.</creator><creatorcontrib>Schippers, Axel ; Neretin, Lev N. ; Kallmeyer, Jens ; Ferdelman, Timothy G. ; Cragg, Barry A. ; John Parkes, R. ; Jørgensen, Bo B.</creatorcontrib><description>Digging deep for bacteria
Sediments beneath the seafloor do not sound a promising habitat, yet it has been estimated from microscopic cell counts that sub-seafloor sediments account for over half of all eukaryotic cells on Earth. That figure does not differentiate live cells from dead, but a new study based on ribosomal RNA detection does. The data suggest that many of the cells are alive, even in 16-million-year-old sediments 400 metres beneath the seabed. All the detectable living cells are bacteria, and they seem to be thriving as they have a turnover rate comparable with those seen in surface sediments.
Chemical analyses of the pore waters from hundreds of deep ocean sediment cores have over decades provided evidence for ongoing processes that require biological catalysis by prokaryotes
1
,
2
,
3
. This sub-seafloor activity of microorganisms may influence the surface Earth by changing the chemistry of the ocean and by triggering the emission of methane, with consequences for the marine carbon cycle and even the global climate
4
,
5
,
6
. Despite the fact that only about 1% of the total marine primary production of organic carbon is available for deep-sea microorganisms
7
,
8
, sub-seafloor sediments harbour over half of all prokaryotic cells on Earth
7
. This estimation has been calculated from numerous microscopic cell counts in sediment cores of the Ocean Drilling Program
1
,
9
. Because these counts cannot differentiate between dead and alive cells, the population size of living microorganisms is unknown
10
,
11
. Here, using ribosomal RNA as a target for the technique known as catalysed reporter deposition-fluorescence
in situ
hybridization (CARD-FISH), we provide direct quantification of live cells as defined by the presence of ribosomes. We show that a large fraction of the sub-seafloor prokaryotes is alive, even in very old (16 million yr) and deep (> 400 m) sediments. All detectable living cells belong to the Bacteria and have turnover times of 0.25–22 yr, comparable to surface sediments.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature03302</identifier><identifier>PMID: 15729341</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Archaea - genetics ; Archaea - isolation & purification ; Bacteria ; Bacteria - cytology ; Bacteria - genetics ; Bacteria - growth & development ; Bacteria - isolation & purification ; Biomass ; Biosphere ; Carbon - metabolism ; Carbon cycle ; Catalysis ; Cells ; Colony Count, Microbial ; Cores ; Deep sea ; DNA, Bacterial - analysis ; DNA, Bacterial - genetics ; DNA, Bacterial - isolation & purification ; Geologic Sediments - microbiology ; Global climate ; Harbors ; Humanities and Social Sciences ; In Situ Hybridization, Fluorescence ; letter ; Marine ; Microorganisms ; multidisciplinary ; Ocean floor ; Oceans ; Oceans and Seas ; Organic carbon ; Oxidation-Reduction ; Population number ; Primary production ; Ribosomes - metabolism ; Science ; Science (multidisciplinary) ; Seawater - microbiology ; Sediments ; Sulfates - metabolism ; Time Factors</subject><ispartof>Nature (London), 2005-02, Vol.433 (7028), p.861-864</ispartof><rights>Macmillan Magazines Ltd. 2005</rights><rights>COPYRIGHT 2005 Nature Publishing Group</rights><rights>Copyright Macmillan Journals Ltd. Feb 24, 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a677t-c51f3e75ee48c51b4d6838a5e8bca4d8943dadee7a8a75c6dc4f56809e8c61153</citedby><cites>FETCH-LOGICAL-a677t-c51f3e75ee48c51b4d6838a5e8bca4d8943dadee7a8a75c6dc4f56809e8c61153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature03302$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature03302$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15729341$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schippers, Axel</creatorcontrib><creatorcontrib>Neretin, Lev N.</creatorcontrib><creatorcontrib>Kallmeyer, Jens</creatorcontrib><creatorcontrib>Ferdelman, Timothy G.</creatorcontrib><creatorcontrib>Cragg, Barry A.</creatorcontrib><creatorcontrib>John Parkes, R.</creatorcontrib><creatorcontrib>Jørgensen, Bo B.</creatorcontrib><title>Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Digging deep for bacteria
Sediments beneath the seafloor do not sound a promising habitat, yet it has been estimated from microscopic cell counts that sub-seafloor sediments account for over half of all eukaryotic cells on Earth. That figure does not differentiate live cells from dead, but a new study based on ribosomal RNA detection does. The data suggest that many of the cells are alive, even in 16-million-year-old sediments 400 metres beneath the seabed. All the detectable living cells are bacteria, and they seem to be thriving as they have a turnover rate comparable with those seen in surface sediments.
Chemical analyses of the pore waters from hundreds of deep ocean sediment cores have over decades provided evidence for ongoing processes that require biological catalysis by prokaryotes
1
,
2
,
3
. This sub-seafloor activity of microorganisms may influence the surface Earth by changing the chemistry of the ocean and by triggering the emission of methane, with consequences for the marine carbon cycle and even the global climate
4
,
5
,
6
. Despite the fact that only about 1% of the total marine primary production of organic carbon is available for deep-sea microorganisms
7
,
8
, sub-seafloor sediments harbour over half of all prokaryotic cells on Earth
7
. This estimation has been calculated from numerous microscopic cell counts in sediment cores of the Ocean Drilling Program
1
,
9
. Because these counts cannot differentiate between dead and alive cells, the population size of living microorganisms is unknown
10
,
11
. Here, using ribosomal RNA as a target for the technique known as catalysed reporter deposition-fluorescence
in situ
hybridization (CARD-FISH), we provide direct quantification of live cells as defined by the presence of ribosomes. We show that a large fraction of the sub-seafloor prokaryotes is alive, even in very old (16 million yr) and deep (> 400 m) sediments. All detectable living cells belong to the Bacteria and have turnover times of 0.25–22 yr, comparable to surface sediments.</description><subject>Archaea - genetics</subject><subject>Archaea - isolation & purification</subject><subject>Bacteria</subject><subject>Bacteria - cytology</subject><subject>Bacteria - genetics</subject><subject>Bacteria - growth & development</subject><subject>Bacteria - isolation & purification</subject><subject>Biomass</subject><subject>Biosphere</subject><subject>Carbon - metabolism</subject><subject>Carbon cycle</subject><subject>Catalysis</subject><subject>Cells</subject><subject>Colony Count, Microbial</subject><subject>Cores</subject><subject>Deep sea</subject><subject>DNA, Bacterial - analysis</subject><subject>DNA, Bacterial - genetics</subject><subject>DNA, Bacterial - isolation & purification</subject><subject>Geologic Sediments - microbiology</subject><subject>Global climate</subject><subject>Harbors</subject><subject>Humanities and Social Sciences</subject><subject>In Situ Hybridization, Fluorescence</subject><subject>letter</subject><subject>Marine</subject><subject>Microorganisms</subject><subject>multidisciplinary</subject><subject>Ocean floor</subject><subject>Oceans</subject><subject>Oceans and Seas</subject><subject>Organic carbon</subject><subject>Oxidation-Reduction</subject><subject>Population number</subject><subject>Primary production</subject><subject>Ribosomes - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Seawater - microbiology</subject><subject>Sediments</subject><subject>Sulfates - metabolism</subject><subject>Time Factors</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0s1rFDEYB-Agil2rJ-8yeKiITk0mn3NcFj8KRaVWPIZM5p1p6uxkmmRE_3tTdmG7sio5JCRPfuQNL0JPCT4lmKo3o0lzAEwpru6hBWFSlEwoeR8tMK5UiRUVR-hRjNcYY04ke4iOCJdVTRlZoIvPwX834ZdPzhYWhiEWvivSFRQtwFTEuSkjmG7wPhSN83G6ggCFa2FMrnPQFiYWg_vhxr5ojE0QnHmMHnRmiPBkOx-jr-_eXq4-lOef3p-tluelEVKm0nLSUZAcgKm8blgrFFWGg2qsYa2qGW1NfoQ0ykhuRWtZx4XCNSgrCOH0GL3Y5E7B38wQk167eFuCGcHPUUtGqaqlIlme_FMKyXiNK_5fSKRkSlUqw-d_wGs_hzGXqyvMuKCcyozKDerNANqNnU_B2B5GCGbwI3Quby-J4kwSxfAudM_byd3ou-j0AMqjhbWzB1Nf7l3IJsHP1Js5Rn325WLfvvq7XV5-W308qG3wMQbo9BTcOjeTJljftqa-05pZP9t-2dysod3ZbS9m8HoDYj4aewi7Pz2U9xuzZOqd</recordid><startdate>20050224</startdate><enddate>20050224</enddate><creator>Schippers, Axel</creator><creator>Neretin, Lev N.</creator><creator>Kallmeyer, Jens</creator><creator>Ferdelman, Timothy G.</creator><creator>Cragg, Barry A.</creator><creator>John Parkes, R.</creator><creator>Jørgensen, Bo B.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7TN</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>7X8</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20050224</creationdate><title>Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria</title><author>Schippers, Axel ; Neretin, Lev N. ; Kallmeyer, Jens ; Ferdelman, Timothy G. ; Cragg, Barry A. ; John Parkes, R. ; Jørgensen, Bo B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a677t-c51f3e75ee48c51b4d6838a5e8bca4d8943dadee7a8a75c6dc4f56809e8c61153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Archaea - genetics</topic><topic>Archaea - isolation & purification</topic><topic>Bacteria</topic><topic>Bacteria - cytology</topic><topic>Bacteria - genetics</topic><topic>Bacteria - growth & development</topic><topic>Bacteria - isolation & purification</topic><topic>Biomass</topic><topic>Biosphere</topic><topic>Carbon - metabolism</topic><topic>Carbon cycle</topic><topic>Catalysis</topic><topic>Cells</topic><topic>Colony Count, Microbial</topic><topic>Cores</topic><topic>Deep sea</topic><topic>DNA, Bacterial - analysis</topic><topic>DNA, Bacterial - genetics</topic><topic>DNA, Bacterial - isolation & purification</topic><topic>Geologic Sediments - microbiology</topic><topic>Global climate</topic><topic>Harbors</topic><topic>Humanities and Social Sciences</topic><topic>In Situ Hybridization, Fluorescence</topic><topic>letter</topic><topic>Marine</topic><topic>Microorganisms</topic><topic>multidisciplinary</topic><topic>Ocean floor</topic><topic>Oceans</topic><topic>Oceans and Seas</topic><topic>Organic carbon</topic><topic>Oxidation-Reduction</topic><topic>Population number</topic><topic>Primary production</topic><topic>Ribosomes - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Seawater - microbiology</topic><topic>Sediments</topic><topic>Sulfates - metabolism</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schippers, Axel</creatorcontrib><creatorcontrib>Neretin, Lev N.</creatorcontrib><creatorcontrib>Kallmeyer, Jens</creatorcontrib><creatorcontrib>Ferdelman, Timothy G.</creatorcontrib><creatorcontrib>Cragg, Barry A.</creatorcontrib><creatorcontrib>John Parkes, R.</creatorcontrib><creatorcontrib>Jørgensen, Bo B.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schippers, Axel</au><au>Neretin, Lev N.</au><au>Kallmeyer, Jens</au><au>Ferdelman, Timothy G.</au><au>Cragg, Barry A.</au><au>John Parkes, R.</au><au>Jørgensen, Bo B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2005-02-24</date><risdate>2005</risdate><volume>433</volume><issue>7028</issue><spage>861</spage><epage>864</epage><pages>861-864</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>Digging deep for bacteria
Sediments beneath the seafloor do not sound a promising habitat, yet it has been estimated from microscopic cell counts that sub-seafloor sediments account for over half of all eukaryotic cells on Earth. That figure does not differentiate live cells from dead, but a new study based on ribosomal RNA detection does. The data suggest that many of the cells are alive, even in 16-million-year-old sediments 400 metres beneath the seabed. All the detectable living cells are bacteria, and they seem to be thriving as they have a turnover rate comparable with those seen in surface sediments.
Chemical analyses of the pore waters from hundreds of deep ocean sediment cores have over decades provided evidence for ongoing processes that require biological catalysis by prokaryotes
1
,
2
,
3
. This sub-seafloor activity of microorganisms may influence the surface Earth by changing the chemistry of the ocean and by triggering the emission of methane, with consequences for the marine carbon cycle and even the global climate
4
,
5
,
6
. Despite the fact that only about 1% of the total marine primary production of organic carbon is available for deep-sea microorganisms
7
,
8
, sub-seafloor sediments harbour over half of all prokaryotic cells on Earth
7
. This estimation has been calculated from numerous microscopic cell counts in sediment cores of the Ocean Drilling Program
1
,
9
. Because these counts cannot differentiate between dead and alive cells, the population size of living microorganisms is unknown
10
,
11
. Here, using ribosomal RNA as a target for the technique known as catalysed reporter deposition-fluorescence
in situ
hybridization (CARD-FISH), we provide direct quantification of live cells as defined by the presence of ribosomes. We show that a large fraction of the sub-seafloor prokaryotes is alive, even in very old (16 million yr) and deep (> 400 m) sediments. All detectable living cells belong to the Bacteria and have turnover times of 0.25–22 yr, comparable to surface sediments.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>15729341</pmid><doi>10.1038/nature03302</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2005-02, Vol.433 (7028), p.861-864 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_743389781 |
source | MEDLINE; SpringerLink Journals; Nature Journals Online |
subjects | Archaea - genetics Archaea - isolation & purification Bacteria Bacteria - cytology Bacteria - genetics Bacteria - growth & development Bacteria - isolation & purification Biomass Biosphere Carbon - metabolism Carbon cycle Catalysis Cells Colony Count, Microbial Cores Deep sea DNA, Bacterial - analysis DNA, Bacterial - genetics DNA, Bacterial - isolation & purification Geologic Sediments - microbiology Global climate Harbors Humanities and Social Sciences In Situ Hybridization, Fluorescence letter Marine Microorganisms multidisciplinary Ocean floor Oceans Oceans and Seas Organic carbon Oxidation-Reduction Population number Primary production Ribosomes - metabolism Science Science (multidisciplinary) Seawater - microbiology Sediments Sulfates - metabolism Time Factors |
title | Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T09%3A29%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prokaryotic%20cells%20of%20the%20deep%20sub-seafloor%20biosphere%20identified%20as%20living%20bacteria&rft.jtitle=Nature%20(London)&rft.au=Schippers,%20Axel&rft.date=2005-02-24&rft.volume=433&rft.issue=7028&rft.spage=861&rft.epage=864&rft.pages=861-864&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature03302&rft_dat=%3Cgale_proqu%3EA185471840%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204563537&rft_id=info:pmid/15729341&rft_galeid=A185471840&rfr_iscdi=true |