Performance improvement of anode-supported electrolytes for planar solid oxide fuel cells via a tape-casting/lamination/co-firing technique
Recently, solid oxide fuel cells (SOFCs) have attracted considerable attention because of their low emissions, high-energy conversion efficiency, and flexible usage of various fuels. One of the key problems of applying flat-type SOFCs to large-scale power generation is that unit cells of large area...
Gespeichert in:
Veröffentlicht in: | Journal of power sources 2010-05, Vol.195 (9), p.2463-2469 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2469 |
---|---|
container_issue | 9 |
container_start_page | 2463 |
container_title | Journal of power sources |
container_volume | 195 |
creator | Park, Hae-Gu Moon, Hwan Park, Sung-Chul Lee, Jong-Jin Yoon, Daeil Hyun, Sang-Hoon Kim, Do-Heyoung |
description | Recently, solid oxide fuel cells (SOFCs) have attracted considerable attention because of their low emissions, high-energy conversion efficiency, and flexible usage of various fuels. One of the key problems of applying flat-type SOFCs to large-scale power generation is that unit cells of large area and with a high degree of flatness cannot be manufactured satisfactorily.
In this study, the effects of tape-casting, laminating, and co-firing conditions on the flatness of anode-supported electrolyte unit cells have been investigated to improve the cell performance of unit cells. The cells are composed of a Ni-yttria-stabilized zirconia (YSZ) anode, a Ni-YSZ anode functional layer (AFL), a YSZ electrolyte, and a lanthanum strontium manganate (LSM)–YSZ cathode. The flatness of the anode-supported electrolyte is optimized by controlling the firing schedule, the lamination method, and the applied load during firing. A 5
cm
×
5
cm (active area 4
cm
×
4
cm) unit cell having a reasonable flatness of 55
μm/5
cm shows a higher power output of 11.4
W as compared with 7.7
W a unit cell with a flatness of 200
μm/5
cm, when operating at 800
°C with humidified hydrogen fuel. |
doi_str_mv | 10.1016/j.jpowsour.2009.11.086 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743386254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775309020941</els_id><sourcerecordid>743386254</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-40cbb18c6a4c03b20d883d0bc2263e7ed1ef74f82781b6fd17812847b6489fd03</originalsourceid><addsrcrecordid>eNqFkU9vFCEYhydGE9fqVzBc1NPM8m-B3jRNtU2atIf2TBh4UTbMMAKz2s_gl5bNVo96ehPy_Pjx8nTdW4IHgonY7of9kn6UtOaBYnw-EDJgJZ51G6Ik66nc7Z53G8yk6qXcsZfdq1L2GGNCJN50v-4g-5QnM1tAYVpyOsAEc0XJIzMnB31ZlyXlCg5BBFtzio8VCmohtEQzm4xKisGh9DM4QH6FiCzEWNAhGGRQNQv01pQa5q_baKYwmxrSvLWp9yG3Q1TBfpvD9xVedy-8iQXePM2z7uHz5f3FVX9z--X64tNNbzkXtefYjiNRVhhuMRspdkoxh0dLqWAgwRHwkntFpSKj8I60SRWXo-Dq3DvMzroPp3vbtq22VD2FcnyzmSGtRUvOmBJ0xxv5_p8kJYxyRUQDxQm0OZWSweslh8nkR02wPlrSe_3Hkj5a0oToZqkF3z01mGJN9LmJCOVvmlKmlOK0cR9PHLSPOQTIutgATZoLuVnRLoX_Vf0GL5SvsQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21324816</pqid></control><display><type>article</type><title>Performance improvement of anode-supported electrolytes for planar solid oxide fuel cells via a tape-casting/lamination/co-firing technique</title><source>Elsevier ScienceDirect Journals</source><creator>Park, Hae-Gu ; Moon, Hwan ; Park, Sung-Chul ; Lee, Jong-Jin ; Yoon, Daeil ; Hyun, Sang-Hoon ; Kim, Do-Heyoung</creator><creatorcontrib>Park, Hae-Gu ; Moon, Hwan ; Park, Sung-Chul ; Lee, Jong-Jin ; Yoon, Daeil ; Hyun, Sang-Hoon ; Kim, Do-Heyoung</creatorcontrib><description>Recently, solid oxide fuel cells (SOFCs) have attracted considerable attention because of their low emissions, high-energy conversion efficiency, and flexible usage of various fuels. One of the key problems of applying flat-type SOFCs to large-scale power generation is that unit cells of large area and with a high degree of flatness cannot be manufactured satisfactorily.
In this study, the effects of tape-casting, laminating, and co-firing conditions on the flatness of anode-supported electrolyte unit cells have been investigated to improve the cell performance of unit cells. The cells are composed of a Ni-yttria-stabilized zirconia (YSZ) anode, a Ni-YSZ anode functional layer (AFL), a YSZ electrolyte, and a lanthanum strontium manganate (LSM)–YSZ cathode. The flatness of the anode-supported electrolyte is optimized by controlling the firing schedule, the lamination method, and the applied load during firing. A 5
cm
×
5
cm (active area 4
cm
×
4
cm) unit cell having a reasonable flatness of 55
μm/5
cm shows a higher power output of 11.4
W as compared with 7.7
W a unit cell with a flatness of 200
μm/5
cm, when operating at 800
°C with humidified hydrogen fuel.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2009.11.086</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Flatness ; Fuel cells ; Power output ; Solid oxide fuel cell ; Tape-casting/lamination/co-firing ; Warp</subject><ispartof>Journal of power sources, 2010-05, Vol.195 (9), p.2463-2469</ispartof><rights>2009 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-40cbb18c6a4c03b20d883d0bc2263e7ed1ef74f82781b6fd17812847b6489fd03</citedby><cites>FETCH-LOGICAL-c446t-40cbb18c6a4c03b20d883d0bc2263e7ed1ef74f82781b6fd17812847b6489fd03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jpowsour.2009.11.086$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22388842$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Hae-Gu</creatorcontrib><creatorcontrib>Moon, Hwan</creatorcontrib><creatorcontrib>Park, Sung-Chul</creatorcontrib><creatorcontrib>Lee, Jong-Jin</creatorcontrib><creatorcontrib>Yoon, Daeil</creatorcontrib><creatorcontrib>Hyun, Sang-Hoon</creatorcontrib><creatorcontrib>Kim, Do-Heyoung</creatorcontrib><title>Performance improvement of anode-supported electrolytes for planar solid oxide fuel cells via a tape-casting/lamination/co-firing technique</title><title>Journal of power sources</title><description>Recently, solid oxide fuel cells (SOFCs) have attracted considerable attention because of their low emissions, high-energy conversion efficiency, and flexible usage of various fuels. One of the key problems of applying flat-type SOFCs to large-scale power generation is that unit cells of large area and with a high degree of flatness cannot be manufactured satisfactorily.
In this study, the effects of tape-casting, laminating, and co-firing conditions on the flatness of anode-supported electrolyte unit cells have been investigated to improve the cell performance of unit cells. The cells are composed of a Ni-yttria-stabilized zirconia (YSZ) anode, a Ni-YSZ anode functional layer (AFL), a YSZ electrolyte, and a lanthanum strontium manganate (LSM)–YSZ cathode. The flatness of the anode-supported electrolyte is optimized by controlling the firing schedule, the lamination method, and the applied load during firing. A 5
cm
×
5
cm (active area 4
cm
×
4
cm) unit cell having a reasonable flatness of 55
μm/5
cm shows a higher power output of 11.4
W as compared with 7.7
W a unit cell with a flatness of 200
μm/5
cm, when operating at 800
°C with humidified hydrogen fuel.</description><subject>Applied sciences</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Flatness</subject><subject>Fuel cells</subject><subject>Power output</subject><subject>Solid oxide fuel cell</subject><subject>Tape-casting/lamination/co-firing</subject><subject>Warp</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkU9vFCEYhydGE9fqVzBc1NPM8m-B3jRNtU2atIf2TBh4UTbMMAKz2s_gl5bNVo96ehPy_Pjx8nTdW4IHgonY7of9kn6UtOaBYnw-EDJgJZ51G6Ik66nc7Z53G8yk6qXcsZfdq1L2GGNCJN50v-4g-5QnM1tAYVpyOsAEc0XJIzMnB31ZlyXlCg5BBFtzio8VCmohtEQzm4xKisGh9DM4QH6FiCzEWNAhGGRQNQv01pQa5q_baKYwmxrSvLWp9yG3Q1TBfpvD9xVedy-8iQXePM2z7uHz5f3FVX9z--X64tNNbzkXtefYjiNRVhhuMRspdkoxh0dLqWAgwRHwkntFpSKj8I60SRWXo-Dq3DvMzroPp3vbtq22VD2FcnyzmSGtRUvOmBJ0xxv5_p8kJYxyRUQDxQm0OZWSweslh8nkR02wPlrSe_3Hkj5a0oToZqkF3z01mGJN9LmJCOVvmlKmlOK0cR9PHLSPOQTIutgATZoLuVnRLoX_Vf0GL5SvsQ</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Park, Hae-Gu</creator><creator>Moon, Hwan</creator><creator>Park, Sung-Chul</creator><creator>Lee, Jong-Jin</creator><creator>Yoon, Daeil</creator><creator>Hyun, Sang-Hoon</creator><creator>Kim, Do-Heyoung</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><scope>SOI</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20100501</creationdate><title>Performance improvement of anode-supported electrolytes for planar solid oxide fuel cells via a tape-casting/lamination/co-firing technique</title><author>Park, Hae-Gu ; Moon, Hwan ; Park, Sung-Chul ; Lee, Jong-Jin ; Yoon, Daeil ; Hyun, Sang-Hoon ; Kim, Do-Heyoung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-40cbb18c6a4c03b20d883d0bc2263e7ed1ef74f82781b6fd17812847b6489fd03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Flatness</topic><topic>Fuel cells</topic><topic>Power output</topic><topic>Solid oxide fuel cell</topic><topic>Tape-casting/lamination/co-firing</topic><topic>Warp</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Hae-Gu</creatorcontrib><creatorcontrib>Moon, Hwan</creatorcontrib><creatorcontrib>Park, Sung-Chul</creatorcontrib><creatorcontrib>Lee, Jong-Jin</creatorcontrib><creatorcontrib>Yoon, Daeil</creatorcontrib><creatorcontrib>Hyun, Sang-Hoon</creatorcontrib><creatorcontrib>Kim, Do-Heyoung</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Hae-Gu</au><au>Moon, Hwan</au><au>Park, Sung-Chul</au><au>Lee, Jong-Jin</au><au>Yoon, Daeil</au><au>Hyun, Sang-Hoon</au><au>Kim, Do-Heyoung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance improvement of anode-supported electrolytes for planar solid oxide fuel cells via a tape-casting/lamination/co-firing technique</atitle><jtitle>Journal of power sources</jtitle><date>2010-05-01</date><risdate>2010</risdate><volume>195</volume><issue>9</issue><spage>2463</spage><epage>2469</epage><pages>2463-2469</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>Recently, solid oxide fuel cells (SOFCs) have attracted considerable attention because of their low emissions, high-energy conversion efficiency, and flexible usage of various fuels. One of the key problems of applying flat-type SOFCs to large-scale power generation is that unit cells of large area and with a high degree of flatness cannot be manufactured satisfactorily.
In this study, the effects of tape-casting, laminating, and co-firing conditions on the flatness of anode-supported electrolyte unit cells have been investigated to improve the cell performance of unit cells. The cells are composed of a Ni-yttria-stabilized zirconia (YSZ) anode, a Ni-YSZ anode functional layer (AFL), a YSZ electrolyte, and a lanthanum strontium manganate (LSM)–YSZ cathode. The flatness of the anode-supported electrolyte is optimized by controlling the firing schedule, the lamination method, and the applied load during firing. A 5
cm
×
5
cm (active area 4
cm
×
4
cm) unit cell having a reasonable flatness of 55
μm/5
cm shows a higher power output of 11.4
W as compared with 7.7
W a unit cell with a flatness of 200
μm/5
cm, when operating at 800
°C with humidified hydrogen fuel.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2009.11.086</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-7753 |
ispartof | Journal of power sources, 2010-05, Vol.195 (9), p.2463-2469 |
issn | 0378-7753 1873-2755 |
language | eng |
recordid | cdi_proquest_miscellaneous_743386254 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Direct energy conversion and energy accumulation Electrical engineering. Electrical power engineering Electrical power engineering Electrochemical conversion: primary and secondary batteries, fuel cells Energy Energy. Thermal use of fuels Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Flatness Fuel cells Power output Solid oxide fuel cell Tape-casting/lamination/co-firing Warp |
title | Performance improvement of anode-supported electrolytes for planar solid oxide fuel cells via a tape-casting/lamination/co-firing technique |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A45%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20improvement%20of%20anode-supported%20electrolytes%20for%20planar%20solid%20oxide%20fuel%20cells%20via%20a%20tape-casting/lamination/co-firing%20technique&rft.jtitle=Journal%20of%20power%20sources&rft.au=Park,%20Hae-Gu&rft.date=2010-05-01&rft.volume=195&rft.issue=9&rft.spage=2463&rft.epage=2469&rft.pages=2463-2469&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2009.11.086&rft_dat=%3Cproquest_cross%3E743386254%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21324816&rft_id=info:pmid/&rft_els_id=S0378775309020941&rfr_iscdi=true |