Prediction of solubility of gases in polystyrene by Adaptive Neuro-Fuzzy Inference System and Radial Basis Function Neural Network
Adaptive Neuro-Fuzzy Inference System (ANFIS) and Radial Basis Function Neural Network (RBF NN) have been developed for prediction of solubility of various gases in polystyrene. Solubility of butane, isobutene, carbon dioxide, 1,1,1,2-tetrafluoroethane (HFC-134a), 1-chloro-1,1-difluoroethane (HCFC-1...
Gespeichert in:
Veröffentlicht in: | Expert systems with applications 2010-04, Vol.37 (4), p.3070-3074 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3074 |
---|---|
container_issue | 4 |
container_start_page | 3070 |
container_title | Expert systems with applications |
container_volume | 37 |
creator | Khajeh, Aboozar Modarress, Hamid |
description | Adaptive Neuro-Fuzzy Inference System (ANFIS) and Radial Basis Function Neural Network (RBF NN) have been developed for prediction of solubility of various gases in polystyrene. Solubility of butane, isobutene, carbon dioxide, 1,1,1,2-tetrafluoroethane (HFC-134a), 1-chloro-1,1-difluoroethane (HCFC-142b), 1,1-difluoroethane (HFC-l52a) and nitrogen in polystyrene is modeled by ANFIS and RBF NN in a wide range of pressure and temperature with high accuracy. The results obtained in this work indicate that ANFIS and RBF NN are effective methods for prediction of solubility of gases in polystyrene and have better accuracy and simplicity compared with the classical methods. |
doi_str_mv | 10.1016/j.eswa.2009.09.023 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743386162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417409008045</els_id><sourcerecordid>743386162</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-9b5269014f9b81acf073bcd1ec6b8d080cba7aa161bab1e6719568d9d9ec8fad3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWD_-gKfcPG1NNm2yAS9arBZKFT_OIR-zkrrd1GS3sh795e5Sz8ILwwzvM8O8CF1QMqaE8qv1GNKXHueEyPGgnB2gES0Ey7iQ7BCNiJyKbELF5BidpLQmhApCxAj9PEVw3jY-1DiUOIWqNb7yTTd07zpBwr7G21B1qeki1IBNh2-c3jZ-B3gFbQzZvP3-7vCiLqE3WMAvvRc2WNcOP2vndYVvdfIJz9t6f2jA-ukKmq8QP87QUamrBOd_9RS9ze9eZw_Z8vF-MbtZZpaxvMmkmeZcEjoppSmotiURzFhHwXJTOFIQa7TQmnJqtKHABZVTXjjpJNii1I6dosv93m0Mny2kRm18slBVuobQJiUmjBWc8rx35nunjSGlCKXaRr_RsVOUqCFvtVZD3mrIWw3KWQ9d7yHof9h5iCpZP-ThfATbKBf8f_gvML2Mrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>743386162</pqid></control><display><type>article</type><title>Prediction of solubility of gases in polystyrene by Adaptive Neuro-Fuzzy Inference System and Radial Basis Function Neural Network</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Khajeh, Aboozar ; Modarress, Hamid</creator><creatorcontrib>Khajeh, Aboozar ; Modarress, Hamid</creatorcontrib><description>Adaptive Neuro-Fuzzy Inference System (ANFIS) and Radial Basis Function Neural Network (RBF NN) have been developed for prediction of solubility of various gases in polystyrene. Solubility of butane, isobutene, carbon dioxide, 1,1,1,2-tetrafluoroethane (HFC-134a), 1-chloro-1,1-difluoroethane (HCFC-142b), 1,1-difluoroethane (HFC-l52a) and nitrogen in polystyrene is modeled by ANFIS and RBF NN in a wide range of pressure and temperature with high accuracy. The results obtained in this work indicate that ANFIS and RBF NN are effective methods for prediction of solubility of gases in polystyrene and have better accuracy and simplicity compared with the classical methods.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2009.09.023</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Adaptive Neuro-Fuzzy Inference System (ANFIS) ; Polystyrene ; Radial Basis Function Neural Network (RBF NN) ; Solubility</subject><ispartof>Expert systems with applications, 2010-04, Vol.37 (4), p.3070-3074</ispartof><rights>2009 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-9b5269014f9b81acf073bcd1ec6b8d080cba7aa161bab1e6719568d9d9ec8fad3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.eswa.2009.09.023$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids></links><search><creatorcontrib>Khajeh, Aboozar</creatorcontrib><creatorcontrib>Modarress, Hamid</creatorcontrib><title>Prediction of solubility of gases in polystyrene by Adaptive Neuro-Fuzzy Inference System and Radial Basis Function Neural Network</title><title>Expert systems with applications</title><description>Adaptive Neuro-Fuzzy Inference System (ANFIS) and Radial Basis Function Neural Network (RBF NN) have been developed for prediction of solubility of various gases in polystyrene. Solubility of butane, isobutene, carbon dioxide, 1,1,1,2-tetrafluoroethane (HFC-134a), 1-chloro-1,1-difluoroethane (HCFC-142b), 1,1-difluoroethane (HFC-l52a) and nitrogen in polystyrene is modeled by ANFIS and RBF NN in a wide range of pressure and temperature with high accuracy. The results obtained in this work indicate that ANFIS and RBF NN are effective methods for prediction of solubility of gases in polystyrene and have better accuracy and simplicity compared with the classical methods.</description><subject>Adaptive Neuro-Fuzzy Inference System (ANFIS)</subject><subject>Polystyrene</subject><subject>Radial Basis Function Neural Network (RBF NN)</subject><subject>Solubility</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWD_-gKfcPG1NNm2yAS9arBZKFT_OIR-zkrrd1GS3sh795e5Sz8ILwwzvM8O8CF1QMqaE8qv1GNKXHueEyPGgnB2gES0Ey7iQ7BCNiJyKbELF5BidpLQmhApCxAj9PEVw3jY-1DiUOIWqNb7yTTd07zpBwr7G21B1qeki1IBNh2-c3jZ-B3gFbQzZvP3-7vCiLqE3WMAvvRc2WNcOP2vndYVvdfIJz9t6f2jA-ukKmq8QP87QUamrBOd_9RS9ze9eZw_Z8vF-MbtZZpaxvMmkmeZcEjoppSmotiURzFhHwXJTOFIQa7TQmnJqtKHABZVTXjjpJNii1I6dosv93m0Mny2kRm18slBVuobQJiUmjBWc8rx35nunjSGlCKXaRr_RsVOUqCFvtVZD3mrIWw3KWQ9d7yHof9h5iCpZP-ThfATbKBf8f_gvML2Mrw</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Khajeh, Aboozar</creator><creator>Modarress, Hamid</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100401</creationdate><title>Prediction of solubility of gases in polystyrene by Adaptive Neuro-Fuzzy Inference System and Radial Basis Function Neural Network</title><author>Khajeh, Aboozar ; Modarress, Hamid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-9b5269014f9b81acf073bcd1ec6b8d080cba7aa161bab1e6719568d9d9ec8fad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adaptive Neuro-Fuzzy Inference System (ANFIS)</topic><topic>Polystyrene</topic><topic>Radial Basis Function Neural Network (RBF NN)</topic><topic>Solubility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khajeh, Aboozar</creatorcontrib><creatorcontrib>Modarress, Hamid</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khajeh, Aboozar</au><au>Modarress, Hamid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of solubility of gases in polystyrene by Adaptive Neuro-Fuzzy Inference System and Radial Basis Function Neural Network</atitle><jtitle>Expert systems with applications</jtitle><date>2010-04-01</date><risdate>2010</risdate><volume>37</volume><issue>4</issue><spage>3070</spage><epage>3074</epage><pages>3070-3074</pages><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>Adaptive Neuro-Fuzzy Inference System (ANFIS) and Radial Basis Function Neural Network (RBF NN) have been developed for prediction of solubility of various gases in polystyrene. Solubility of butane, isobutene, carbon dioxide, 1,1,1,2-tetrafluoroethane (HFC-134a), 1-chloro-1,1-difluoroethane (HCFC-142b), 1,1-difluoroethane (HFC-l52a) and nitrogen in polystyrene is modeled by ANFIS and RBF NN in a wide range of pressure and temperature with high accuracy. The results obtained in this work indicate that ANFIS and RBF NN are effective methods for prediction of solubility of gases in polystyrene and have better accuracy and simplicity compared with the classical methods.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2009.09.023</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4174 |
ispartof | Expert systems with applications, 2010-04, Vol.37 (4), p.3070-3074 |
issn | 0957-4174 1873-6793 |
language | eng |
recordid | cdi_proquest_miscellaneous_743386162 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Adaptive Neuro-Fuzzy Inference System (ANFIS) Polystyrene Radial Basis Function Neural Network (RBF NN) Solubility |
title | Prediction of solubility of gases in polystyrene by Adaptive Neuro-Fuzzy Inference System and Radial Basis Function Neural Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T08%3A19%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20solubility%20of%20gases%20in%20polystyrene%20by%20Adaptive%20Neuro-Fuzzy%20Inference%20System%20and%20Radial%20Basis%20Function%20Neural%20Network&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Khajeh,%20Aboozar&rft.date=2010-04-01&rft.volume=37&rft.issue=4&rft.spage=3070&rft.epage=3074&rft.pages=3070-3074&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2009.09.023&rft_dat=%3Cproquest_cross%3E743386162%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=743386162&rft_id=info:pmid/&rft_els_id=S0957417409008045&rfr_iscdi=true |