Prediction of solubility of gases in polystyrene by Adaptive Neuro-Fuzzy Inference System and Radial Basis Function Neural Network

Adaptive Neuro-Fuzzy Inference System (ANFIS) and Radial Basis Function Neural Network (RBF NN) have been developed for prediction of solubility of various gases in polystyrene. Solubility of butane, isobutene, carbon dioxide, 1,1,1,2-tetrafluoroethane (HFC-134a), 1-chloro-1,1-difluoroethane (HCFC-1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications 2010-04, Vol.37 (4), p.3070-3074
Hauptverfasser: Khajeh, Aboozar, Modarress, Hamid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3074
container_issue 4
container_start_page 3070
container_title Expert systems with applications
container_volume 37
creator Khajeh, Aboozar
Modarress, Hamid
description Adaptive Neuro-Fuzzy Inference System (ANFIS) and Radial Basis Function Neural Network (RBF NN) have been developed for prediction of solubility of various gases in polystyrene. Solubility of butane, isobutene, carbon dioxide, 1,1,1,2-tetrafluoroethane (HFC-134a), 1-chloro-1,1-difluoroethane (HCFC-142b), 1,1-difluoroethane (HFC-l52a) and nitrogen in polystyrene is modeled by ANFIS and RBF NN in a wide range of pressure and temperature with high accuracy. The results obtained in this work indicate that ANFIS and RBF NN are effective methods for prediction of solubility of gases in polystyrene and have better accuracy and simplicity compared with the classical methods.
doi_str_mv 10.1016/j.eswa.2009.09.023
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743386162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417409008045</els_id><sourcerecordid>743386162</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-9b5269014f9b81acf073bcd1ec6b8d080cba7aa161bab1e6719568d9d9ec8fad3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWD_-gKfcPG1NNm2yAS9arBZKFT_OIR-zkrrd1GS3sh795e5Sz8ILwwzvM8O8CF1QMqaE8qv1GNKXHueEyPGgnB2gES0Ey7iQ7BCNiJyKbELF5BidpLQmhApCxAj9PEVw3jY-1DiUOIWqNb7yTTd07zpBwr7G21B1qeki1IBNh2-c3jZ-B3gFbQzZvP3-7vCiLqE3WMAvvRc2WNcOP2vndYVvdfIJz9t6f2jA-ukKmq8QP87QUamrBOd_9RS9ze9eZw_Z8vF-MbtZZpaxvMmkmeZcEjoppSmotiURzFhHwXJTOFIQa7TQmnJqtKHABZVTXjjpJNii1I6dosv93m0Mny2kRm18slBVuobQJiUmjBWc8rx35nunjSGlCKXaRr_RsVOUqCFvtVZD3mrIWw3KWQ9d7yHof9h5iCpZP-ThfATbKBf8f_gvML2Mrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>743386162</pqid></control><display><type>article</type><title>Prediction of solubility of gases in polystyrene by Adaptive Neuro-Fuzzy Inference System and Radial Basis Function Neural Network</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Khajeh, Aboozar ; Modarress, Hamid</creator><creatorcontrib>Khajeh, Aboozar ; Modarress, Hamid</creatorcontrib><description>Adaptive Neuro-Fuzzy Inference System (ANFIS) and Radial Basis Function Neural Network (RBF NN) have been developed for prediction of solubility of various gases in polystyrene. Solubility of butane, isobutene, carbon dioxide, 1,1,1,2-tetrafluoroethane (HFC-134a), 1-chloro-1,1-difluoroethane (HCFC-142b), 1,1-difluoroethane (HFC-l52a) and nitrogen in polystyrene is modeled by ANFIS and RBF NN in a wide range of pressure and temperature with high accuracy. The results obtained in this work indicate that ANFIS and RBF NN are effective methods for prediction of solubility of gases in polystyrene and have better accuracy and simplicity compared with the classical methods.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2009.09.023</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Adaptive Neuro-Fuzzy Inference System (ANFIS) ; Polystyrene ; Radial Basis Function Neural Network (RBF NN) ; Solubility</subject><ispartof>Expert systems with applications, 2010-04, Vol.37 (4), p.3070-3074</ispartof><rights>2009 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-9b5269014f9b81acf073bcd1ec6b8d080cba7aa161bab1e6719568d9d9ec8fad3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.eswa.2009.09.023$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids></links><search><creatorcontrib>Khajeh, Aboozar</creatorcontrib><creatorcontrib>Modarress, Hamid</creatorcontrib><title>Prediction of solubility of gases in polystyrene by Adaptive Neuro-Fuzzy Inference System and Radial Basis Function Neural Network</title><title>Expert systems with applications</title><description>Adaptive Neuro-Fuzzy Inference System (ANFIS) and Radial Basis Function Neural Network (RBF NN) have been developed for prediction of solubility of various gases in polystyrene. Solubility of butane, isobutene, carbon dioxide, 1,1,1,2-tetrafluoroethane (HFC-134a), 1-chloro-1,1-difluoroethane (HCFC-142b), 1,1-difluoroethane (HFC-l52a) and nitrogen in polystyrene is modeled by ANFIS and RBF NN in a wide range of pressure and temperature with high accuracy. The results obtained in this work indicate that ANFIS and RBF NN are effective methods for prediction of solubility of gases in polystyrene and have better accuracy and simplicity compared with the classical methods.</description><subject>Adaptive Neuro-Fuzzy Inference System (ANFIS)</subject><subject>Polystyrene</subject><subject>Radial Basis Function Neural Network (RBF NN)</subject><subject>Solubility</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWD_-gKfcPG1NNm2yAS9arBZKFT_OIR-zkrrd1GS3sh795e5Sz8ILwwzvM8O8CF1QMqaE8qv1GNKXHueEyPGgnB2gES0Ey7iQ7BCNiJyKbELF5BidpLQmhApCxAj9PEVw3jY-1DiUOIWqNb7yTTd07zpBwr7G21B1qeki1IBNh2-c3jZ-B3gFbQzZvP3-7vCiLqE3WMAvvRc2WNcOP2vndYVvdfIJz9t6f2jA-ukKmq8QP87QUamrBOd_9RS9ze9eZw_Z8vF-MbtZZpaxvMmkmeZcEjoppSmotiURzFhHwXJTOFIQa7TQmnJqtKHABZVTXjjpJNii1I6dosv93m0Mny2kRm18slBVuobQJiUmjBWc8rx35nunjSGlCKXaRr_RsVOUqCFvtVZD3mrIWw3KWQ9d7yHof9h5iCpZP-ThfATbKBf8f_gvML2Mrw</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Khajeh, Aboozar</creator><creator>Modarress, Hamid</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100401</creationdate><title>Prediction of solubility of gases in polystyrene by Adaptive Neuro-Fuzzy Inference System and Radial Basis Function Neural Network</title><author>Khajeh, Aboozar ; Modarress, Hamid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-9b5269014f9b81acf073bcd1ec6b8d080cba7aa161bab1e6719568d9d9ec8fad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adaptive Neuro-Fuzzy Inference System (ANFIS)</topic><topic>Polystyrene</topic><topic>Radial Basis Function Neural Network (RBF NN)</topic><topic>Solubility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khajeh, Aboozar</creatorcontrib><creatorcontrib>Modarress, Hamid</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khajeh, Aboozar</au><au>Modarress, Hamid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of solubility of gases in polystyrene by Adaptive Neuro-Fuzzy Inference System and Radial Basis Function Neural Network</atitle><jtitle>Expert systems with applications</jtitle><date>2010-04-01</date><risdate>2010</risdate><volume>37</volume><issue>4</issue><spage>3070</spage><epage>3074</epage><pages>3070-3074</pages><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>Adaptive Neuro-Fuzzy Inference System (ANFIS) and Radial Basis Function Neural Network (RBF NN) have been developed for prediction of solubility of various gases in polystyrene. Solubility of butane, isobutene, carbon dioxide, 1,1,1,2-tetrafluoroethane (HFC-134a), 1-chloro-1,1-difluoroethane (HCFC-142b), 1,1-difluoroethane (HFC-l52a) and nitrogen in polystyrene is modeled by ANFIS and RBF NN in a wide range of pressure and temperature with high accuracy. The results obtained in this work indicate that ANFIS and RBF NN are effective methods for prediction of solubility of gases in polystyrene and have better accuracy and simplicity compared with the classical methods.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2009.09.023</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4174
ispartof Expert systems with applications, 2010-04, Vol.37 (4), p.3070-3074
issn 0957-4174
1873-6793
language eng
recordid cdi_proquest_miscellaneous_743386162
source Elsevier ScienceDirect Journals Complete
subjects Adaptive Neuro-Fuzzy Inference System (ANFIS)
Polystyrene
Radial Basis Function Neural Network (RBF NN)
Solubility
title Prediction of solubility of gases in polystyrene by Adaptive Neuro-Fuzzy Inference System and Radial Basis Function Neural Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T08%3A19%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20solubility%20of%20gases%20in%20polystyrene%20by%20Adaptive%20Neuro-Fuzzy%20Inference%20System%20and%20Radial%20Basis%20Function%20Neural%20Network&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Khajeh,%20Aboozar&rft.date=2010-04-01&rft.volume=37&rft.issue=4&rft.spage=3070&rft.epage=3074&rft.pages=3070-3074&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2009.09.023&rft_dat=%3Cproquest_cross%3E743386162%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=743386162&rft_id=info:pmid/&rft_els_id=S0957417409008045&rfr_iscdi=true