Prediction of men's shirt pattern based on 3D body measurements
Purpose - The paper discusses the prediction of shirt patterns for different body sizes using multiple linear regression (MLR).Design methodology approach - A total of 29 pattern parameters from men's tailor-made shirt and 34 body parameters obtained from a body scanner were designed for analys...
Gespeichert in:
Veröffentlicht in: | International journal of clothing science and technology 2005-01, Vol.17 (2), p.100-108 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 108 |
---|---|
container_issue | 2 |
container_start_page | 100 |
container_title | International journal of clothing science and technology |
container_volume | 17 |
creator | Chan, A.P Fan, J Yu, W.M |
description | Purpose - The paper discusses the prediction of shirt patterns for different body sizes using multiple linear regression (MLR).Design methodology approach - A total of 29 pattern parameters from men's tailor-made shirt and 34 body parameters obtained from a body scanner were designed for analysis. MLR has been applied to examine the underlying relationship between shirt pattern parameters and body measurements.Findings- Compared with formulae from the pattern expert, the prediction of shirt pattern from MLR has been improved.Originality value - The findings could help to predict pattern size with different body sizes more accurately. |
doi_str_mv | 10.1108/09556220510581245 |
format | Article |
fullrecord | <record><control><sourceid>proquest_emera</sourceid><recordid>TN_cdi_proquest_miscellaneous_743385546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>810724301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c579t-602eb297067ced2d740a7079ad4017cb00737986451c80962765e75708c7d7b43</originalsourceid><addsrcrecordid>eNqN0UFPFDEUB_CGSMIKfgBuEw5ycfT1ta-vczIGBIybYIxGbk1n2g2DuzNrO5vIt7dkDQcwwqmH9_u36fsLcSjhrZRg30FDZBCBJJCVqGlHzCSTrakh9ULM7uZ1AbgnXuZ8AwBaW5qJ919SDH039eNQjYtqFYfjXOXrPk3V2k9TTEPV-hxDVebqtGrHcFuQz5sUi53ygdhd-GWOr_6e--L72cdvJxf1_PL808mHed0RN1NtAGOLDYPhLgYMrMEzcOODBsldC8CKG2s0yc5CY5ANRSYG23HgVqt9cby9d53GX5uYJ7fqcxeXSz_EcZMda6UskTZFvv6vVEZDg1I-CdGW3ZF6FpSsUBV49ADejJs0lL04RFu-r5EKklvUpTHnFBdunfqVT7dOgrvr0j3qsmTqbabPU_x9H_DppzNlceT0D3RX5uv8Aj-jOy0etr6UlPwyPOuJN_-OPKJuHRbqD0oVtzY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>228297425</pqid></control><display><type>article</type><title>Prediction of men's shirt pattern based on 3D body measurements</title><source>Emerald Journals</source><creator>Chan, A.P ; Fan, J ; Yu, W.M</creator><creatorcontrib>Chan, A.P ; Fan, J ; Yu, W.M</creatorcontrib><description>Purpose - The paper discusses the prediction of shirt patterns for different body sizes using multiple linear regression (MLR).Design methodology approach - A total of 29 pattern parameters from men's tailor-made shirt and 34 body parameters obtained from a body scanner were designed for analysis. MLR has been applied to examine the underlying relationship between shirt pattern parameters and body measurements.Findings- Compared with formulae from the pattern expert, the prediction of shirt pattern from MLR has been improved.Originality value - The findings could help to predict pattern size with different body sizes more accurately.</description><identifier>ISSN: 0955-6222</identifier><identifier>EISSN: 1758-5953</identifier><identifier>DOI: 10.1108/09556220510581245</identifier><identifier>CODEN: ICSTEH</identifier><language>eng</language><publisher>Bradford: Emerald Group Publishing Limited</publisher><subject>Accuracy ; Body measurements ; Design ; Measurement ; Men ; Multiple regression analysis ; Neural networks ; Physical testing ; Regression analysis ; Scanners ; Studies ; Testing ; Women</subject><ispartof>International journal of clothing science and technology, 2005-01, Vol.17 (2), p.100-108</ispartof><rights>Emerald Group Publishing Limited</rights><rights>Copyright MCB UP Limited (MCB) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c579t-602eb297067ced2d740a7079ad4017cb00737986451c80962765e75708c7d7b43</citedby><cites>FETCH-LOGICAL-c579t-602eb297067ced2d740a7079ad4017cb00737986451c80962765e75708c7d7b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/09556220510581245/full/pdf$$EPDF$$P50$$Gemerald$$H</linktopdf><linktohtml>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/09556220510581245/full/html$$EHTML$$P50$$Gemerald$$H</linktohtml><link.rule.ids>314,776,780,961,11614,27901,27902,52661,52664</link.rule.ids></links><search><creatorcontrib>Chan, A.P</creatorcontrib><creatorcontrib>Fan, J</creatorcontrib><creatorcontrib>Yu, W.M</creatorcontrib><title>Prediction of men's shirt pattern based on 3D body measurements</title><title>International journal of clothing science and technology</title><description>Purpose - The paper discusses the prediction of shirt patterns for different body sizes using multiple linear regression (MLR).Design methodology approach - A total of 29 pattern parameters from men's tailor-made shirt and 34 body parameters obtained from a body scanner were designed for analysis. MLR has been applied to examine the underlying relationship between shirt pattern parameters and body measurements.Findings- Compared with formulae from the pattern expert, the prediction of shirt pattern from MLR has been improved.Originality value - The findings could help to predict pattern size with different body sizes more accurately.</description><subject>Accuracy</subject><subject>Body measurements</subject><subject>Design</subject><subject>Measurement</subject><subject>Men</subject><subject>Multiple regression analysis</subject><subject>Neural networks</subject><subject>Physical testing</subject><subject>Regression analysis</subject><subject>Scanners</subject><subject>Studies</subject><subject>Testing</subject><subject>Women</subject><issn>0955-6222</issn><issn>1758-5953</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqN0UFPFDEUB_CGSMIKfgBuEw5ycfT1ta-vczIGBIybYIxGbk1n2g2DuzNrO5vIt7dkDQcwwqmH9_u36fsLcSjhrZRg30FDZBCBJJCVqGlHzCSTrakh9ULM7uZ1AbgnXuZ8AwBaW5qJ919SDH039eNQjYtqFYfjXOXrPk3V2k9TTEPV-hxDVebqtGrHcFuQz5sUi53ygdhd-GWOr_6e--L72cdvJxf1_PL808mHed0RN1NtAGOLDYPhLgYMrMEzcOODBsldC8CKG2s0yc5CY5ANRSYG23HgVqt9cby9d53GX5uYJ7fqcxeXSz_EcZMda6UskTZFvv6vVEZDg1I-CdGW3ZF6FpSsUBV49ADejJs0lL04RFu-r5EKklvUpTHnFBdunfqVT7dOgrvr0j3qsmTqbabPU_x9H_DppzNlceT0D3RX5uv8Aj-jOy0etr6UlPwyPOuJN_-OPKJuHRbqD0oVtzY</recordid><startdate>20050101</startdate><enddate>20050101</enddate><creator>Chan, A.P</creator><creator>Fan, J</creator><creator>Yu, W.M</creator><general>Emerald Group Publishing Limited</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20050101</creationdate><title>Prediction of men's shirt pattern based on 3D body measurements</title><author>Chan, A.P ; Fan, J ; Yu, W.M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c579t-602eb297067ced2d740a7079ad4017cb00737986451c80962765e75708c7d7b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Accuracy</topic><topic>Body measurements</topic><topic>Design</topic><topic>Measurement</topic><topic>Men</topic><topic>Multiple regression analysis</topic><topic>Neural networks</topic><topic>Physical testing</topic><topic>Regression analysis</topic><topic>Scanners</topic><topic>Studies</topic><topic>Testing</topic><topic>Women</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chan, A.P</creatorcontrib><creatorcontrib>Fan, J</creatorcontrib><creatorcontrib>Yu, W.M</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of clothing science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chan, A.P</au><au>Fan, J</au><au>Yu, W.M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of men's shirt pattern based on 3D body measurements</atitle><jtitle>International journal of clothing science and technology</jtitle><date>2005-01-01</date><risdate>2005</risdate><volume>17</volume><issue>2</issue><spage>100</spage><epage>108</epage><pages>100-108</pages><issn>0955-6222</issn><eissn>1758-5953</eissn><coden>ICSTEH</coden><abstract>Purpose - The paper discusses the prediction of shirt patterns for different body sizes using multiple linear regression (MLR).Design methodology approach - A total of 29 pattern parameters from men's tailor-made shirt and 34 body parameters obtained from a body scanner were designed for analysis. MLR has been applied to examine the underlying relationship between shirt pattern parameters and body measurements.Findings- Compared with formulae from the pattern expert, the prediction of shirt pattern from MLR has been improved.Originality value - The findings could help to predict pattern size with different body sizes more accurately.</abstract><cop>Bradford</cop><pub>Emerald Group Publishing Limited</pub><doi>10.1108/09556220510581245</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0955-6222 |
ispartof | International journal of clothing science and technology, 2005-01, Vol.17 (2), p.100-108 |
issn | 0955-6222 1758-5953 |
language | eng |
recordid | cdi_proquest_miscellaneous_743385546 |
source | Emerald Journals |
subjects | Accuracy Body measurements Design Measurement Men Multiple regression analysis Neural networks Physical testing Regression analysis Scanners Studies Testing Women |
title | Prediction of men's shirt pattern based on 3D body measurements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T09%3A22%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_emera&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20men's%20shirt%20pattern%20based%20on%203D%20body%20measurements&rft.jtitle=International%20journal%20of%20clothing%20science%20and%20technology&rft.au=Chan,%20A.P&rft.date=2005-01-01&rft.volume=17&rft.issue=2&rft.spage=100&rft.epage=108&rft.pages=100-108&rft.issn=0955-6222&rft.eissn=1758-5953&rft.coden=ICSTEH&rft_id=info:doi/10.1108/09556220510581245&rft_dat=%3Cproquest_emera%3E810724301%3C/proquest_emera%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=228297425&rft_id=info:pmid/&rfr_iscdi=true |