Prediction of men's shirt pattern based on 3D body measurements

Purpose - The paper discusses the prediction of shirt patterns for different body sizes using multiple linear regression (MLR).Design methodology approach - A total of 29 pattern parameters from men's tailor-made shirt and 34 body parameters obtained from a body scanner were designed for analys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of clothing science and technology 2005-01, Vol.17 (2), p.100-108
Hauptverfasser: Chan, A.P, Fan, J, Yu, W.M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 108
container_issue 2
container_start_page 100
container_title International journal of clothing science and technology
container_volume 17
creator Chan, A.P
Fan, J
Yu, W.M
description Purpose - The paper discusses the prediction of shirt patterns for different body sizes using multiple linear regression (MLR).Design methodology approach - A total of 29 pattern parameters from men's tailor-made shirt and 34 body parameters obtained from a body scanner were designed for analysis. MLR has been applied to examine the underlying relationship between shirt pattern parameters and body measurements.Findings- Compared with formulae from the pattern expert, the prediction of shirt pattern from MLR has been improved.Originality value - The findings could help to predict pattern size with different body sizes more accurately.
doi_str_mv 10.1108/09556220510581245
format Article
fullrecord <record><control><sourceid>proquest_emera</sourceid><recordid>TN_cdi_proquest_miscellaneous_743385546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>810724301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c579t-602eb297067ced2d740a7079ad4017cb00737986451c80962765e75708c7d7b43</originalsourceid><addsrcrecordid>eNqN0UFPFDEUB_CGSMIKfgBuEw5ycfT1ta-vczIGBIybYIxGbk1n2g2DuzNrO5vIt7dkDQcwwqmH9_u36fsLcSjhrZRg30FDZBCBJJCVqGlHzCSTrakh9ULM7uZ1AbgnXuZ8AwBaW5qJ919SDH039eNQjYtqFYfjXOXrPk3V2k9TTEPV-hxDVebqtGrHcFuQz5sUi53ygdhd-GWOr_6e--L72cdvJxf1_PL808mHed0RN1NtAGOLDYPhLgYMrMEzcOODBsldC8CKG2s0yc5CY5ANRSYG23HgVqt9cby9d53GX5uYJ7fqcxeXSz_EcZMda6UskTZFvv6vVEZDg1I-CdGW3ZF6FpSsUBV49ADejJs0lL04RFu-r5EKklvUpTHnFBdunfqVT7dOgrvr0j3qsmTqbabPU_x9H_DppzNlceT0D3RX5uv8Aj-jOy0etr6UlPwyPOuJN_-OPKJuHRbqD0oVtzY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>228297425</pqid></control><display><type>article</type><title>Prediction of men's shirt pattern based on 3D body measurements</title><source>Emerald Journals</source><creator>Chan, A.P ; Fan, J ; Yu, W.M</creator><creatorcontrib>Chan, A.P ; Fan, J ; Yu, W.M</creatorcontrib><description>Purpose - The paper discusses the prediction of shirt patterns for different body sizes using multiple linear regression (MLR).Design methodology approach - A total of 29 pattern parameters from men's tailor-made shirt and 34 body parameters obtained from a body scanner were designed for analysis. MLR has been applied to examine the underlying relationship between shirt pattern parameters and body measurements.Findings- Compared with formulae from the pattern expert, the prediction of shirt pattern from MLR has been improved.Originality value - The findings could help to predict pattern size with different body sizes more accurately.</description><identifier>ISSN: 0955-6222</identifier><identifier>EISSN: 1758-5953</identifier><identifier>DOI: 10.1108/09556220510581245</identifier><identifier>CODEN: ICSTEH</identifier><language>eng</language><publisher>Bradford: Emerald Group Publishing Limited</publisher><subject>Accuracy ; Body measurements ; Design ; Measurement ; Men ; Multiple regression analysis ; Neural networks ; Physical testing ; Regression analysis ; Scanners ; Studies ; Testing ; Women</subject><ispartof>International journal of clothing science and technology, 2005-01, Vol.17 (2), p.100-108</ispartof><rights>Emerald Group Publishing Limited</rights><rights>Copyright MCB UP Limited (MCB) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c579t-602eb297067ced2d740a7079ad4017cb00737986451c80962765e75708c7d7b43</citedby><cites>FETCH-LOGICAL-c579t-602eb297067ced2d740a7079ad4017cb00737986451c80962765e75708c7d7b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/09556220510581245/full/pdf$$EPDF$$P50$$Gemerald$$H</linktopdf><linktohtml>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/09556220510581245/full/html$$EHTML$$P50$$Gemerald$$H</linktohtml><link.rule.ids>314,776,780,961,11614,27901,27902,52661,52664</link.rule.ids></links><search><creatorcontrib>Chan, A.P</creatorcontrib><creatorcontrib>Fan, J</creatorcontrib><creatorcontrib>Yu, W.M</creatorcontrib><title>Prediction of men's shirt pattern based on 3D body measurements</title><title>International journal of clothing science and technology</title><description>Purpose - The paper discusses the prediction of shirt patterns for different body sizes using multiple linear regression (MLR).Design methodology approach - A total of 29 pattern parameters from men's tailor-made shirt and 34 body parameters obtained from a body scanner were designed for analysis. MLR has been applied to examine the underlying relationship between shirt pattern parameters and body measurements.Findings- Compared with formulae from the pattern expert, the prediction of shirt pattern from MLR has been improved.Originality value - The findings could help to predict pattern size with different body sizes more accurately.</description><subject>Accuracy</subject><subject>Body measurements</subject><subject>Design</subject><subject>Measurement</subject><subject>Men</subject><subject>Multiple regression analysis</subject><subject>Neural networks</subject><subject>Physical testing</subject><subject>Regression analysis</subject><subject>Scanners</subject><subject>Studies</subject><subject>Testing</subject><subject>Women</subject><issn>0955-6222</issn><issn>1758-5953</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqN0UFPFDEUB_CGSMIKfgBuEw5ycfT1ta-vczIGBIybYIxGbk1n2g2DuzNrO5vIt7dkDQcwwqmH9_u36fsLcSjhrZRg30FDZBCBJJCVqGlHzCSTrakh9ULM7uZ1AbgnXuZ8AwBaW5qJ919SDH039eNQjYtqFYfjXOXrPk3V2k9TTEPV-hxDVebqtGrHcFuQz5sUi53ygdhd-GWOr_6e--L72cdvJxf1_PL808mHed0RN1NtAGOLDYPhLgYMrMEzcOODBsldC8CKG2s0yc5CY5ANRSYG23HgVqt9cby9d53GX5uYJ7fqcxeXSz_EcZMda6UskTZFvv6vVEZDg1I-CdGW3ZF6FpSsUBV49ADejJs0lL04RFu-r5EKklvUpTHnFBdunfqVT7dOgrvr0j3qsmTqbabPU_x9H_DppzNlceT0D3RX5uv8Aj-jOy0etr6UlPwyPOuJN_-OPKJuHRbqD0oVtzY</recordid><startdate>20050101</startdate><enddate>20050101</enddate><creator>Chan, A.P</creator><creator>Fan, J</creator><creator>Yu, W.M</creator><general>Emerald Group Publishing Limited</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20050101</creationdate><title>Prediction of men's shirt pattern based on 3D body measurements</title><author>Chan, A.P ; Fan, J ; Yu, W.M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c579t-602eb297067ced2d740a7079ad4017cb00737986451c80962765e75708c7d7b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Accuracy</topic><topic>Body measurements</topic><topic>Design</topic><topic>Measurement</topic><topic>Men</topic><topic>Multiple regression analysis</topic><topic>Neural networks</topic><topic>Physical testing</topic><topic>Regression analysis</topic><topic>Scanners</topic><topic>Studies</topic><topic>Testing</topic><topic>Women</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chan, A.P</creatorcontrib><creatorcontrib>Fan, J</creatorcontrib><creatorcontrib>Yu, W.M</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of clothing science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chan, A.P</au><au>Fan, J</au><au>Yu, W.M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of men's shirt pattern based on 3D body measurements</atitle><jtitle>International journal of clothing science and technology</jtitle><date>2005-01-01</date><risdate>2005</risdate><volume>17</volume><issue>2</issue><spage>100</spage><epage>108</epage><pages>100-108</pages><issn>0955-6222</issn><eissn>1758-5953</eissn><coden>ICSTEH</coden><abstract>Purpose - The paper discusses the prediction of shirt patterns for different body sizes using multiple linear regression (MLR).Design methodology approach - A total of 29 pattern parameters from men's tailor-made shirt and 34 body parameters obtained from a body scanner were designed for analysis. MLR has been applied to examine the underlying relationship between shirt pattern parameters and body measurements.Findings- Compared with formulae from the pattern expert, the prediction of shirt pattern from MLR has been improved.Originality value - The findings could help to predict pattern size with different body sizes more accurately.</abstract><cop>Bradford</cop><pub>Emerald Group Publishing Limited</pub><doi>10.1108/09556220510581245</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0955-6222
ispartof International journal of clothing science and technology, 2005-01, Vol.17 (2), p.100-108
issn 0955-6222
1758-5953
language eng
recordid cdi_proquest_miscellaneous_743385546
source Emerald Journals
subjects Accuracy
Body measurements
Design
Measurement
Men
Multiple regression analysis
Neural networks
Physical testing
Regression analysis
Scanners
Studies
Testing
Women
title Prediction of men's shirt pattern based on 3D body measurements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T09%3A22%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_emera&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20men's%20shirt%20pattern%20based%20on%203D%20body%20measurements&rft.jtitle=International%20journal%20of%20clothing%20science%20and%20technology&rft.au=Chan,%20A.P&rft.date=2005-01-01&rft.volume=17&rft.issue=2&rft.spage=100&rft.epage=108&rft.pages=100-108&rft.issn=0955-6222&rft.eissn=1758-5953&rft.coden=ICSTEH&rft_id=info:doi/10.1108/09556220510581245&rft_dat=%3Cproquest_emera%3E810724301%3C/proquest_emera%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=228297425&rft_id=info:pmid/&rfr_iscdi=true