Periodically ordered nanoscale islands and mesoporous films composed of nanocrystalline multimetallic oxides
Innovative strategies to produce well-defined nanoparticles and other nanostructures such as nanofibres, quantum wells and mesoporous materials have revitalized materials science 1 , 2 for the potential benefit to society. Here, we report a controlled process, involving soft-chemistry-based depositi...
Gespeichert in:
Veröffentlicht in: | Nature materials 2004-11, Vol.3 (11), p.787-792 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 792 |
---|---|
container_issue | 11 |
container_start_page | 787 |
container_title | Nature materials |
container_volume | 3 |
creator | Grosso, David Boissière, Cédric Smarsly, Bernd Brezesinski, Torsten Pinna, Nicola Albouy, Pierre A. Amenitsch, Heinz Antonietti, Markus Sanchez, Clément |
description | Innovative strategies to produce well-defined nanoparticles and other nanostructures such as nanofibres, quantum wells and mesoporous materials have revitalized materials science
1
,
2
for the potential benefit to society. Here, we report a controlled process, involving soft-chemistry-based deposition, template-assisted mesostructured growth, and tuned annealing conditions that allows the preparation of ordered mesoporous crystalline networks and mesostructured nano-island single layers, composed of multicationic metal oxides having perovskite, tetragonal or ilmenite structures. This strategy to obtain meso-organized multi-metal-oxide nanocrystalline films (M
3
NF) bridges the gap between conventional mesoporous materials and the remarkable properties of crystalline ternary or quaternary metallic oxides. Nanocrystalline mesoporous films with controlled wall thickness (10–20 nm) of dielectric SrTiO
3
, photoactive MgTa
2
O
6
or ferromagnetic semi-conducting Co
x
Ti
1−
x
O
2−
x
were prepared by evaporation-induced self-assembly (EISA) using a specially designed non-ionic block-copolymer template. A tuned thermal treatment of the mesoporous films permits the transfer of the wall structure into nanocrystallites, with all tectonic units being tightly incorporated into mechanically stable ordered tri- or bidimensional nanocrystalline networks. This methodology should allow multifunctionalization, miniaturization and integration during development of devices such as smart sensors and actuators, better-performing photocatalysts, and fast electrochromic devices. On the other hand, organized arrays of dispersed ferromagnetic or ferroelectric nanoparticles are promising materials for spintronics and for cheap, non-volatile 'flash' memories. |
doi_str_mv | 10.1038/nmat1206 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_743384683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67025398</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-49aa75dd8e65dd9c0a26ea4ed4a136a3ae834a25eda9e6ef8c90b239785d50293</originalsourceid><addsrcrecordid>eNqFkcuKVDEQhoMozkXBJ5DgwsuiNfeTLIfBcYQGXeg6ZJI6miE5aZNzxH5709OtDQq6qUoqX_3hr0LoCSWvKeH6zZTdTBlR99ApFYNaCaXI_cOZUsZO0Flrt4QwKqV6iE56IkxzfYrSR6ixhOhdSltcaoAKAU9uKq2XAMeW3BQa7gFnaGVTalkaHmPKDfuSN6V1vox3Lb5u29yF4gQ4L2mOGe6uHpcfMUB7hB6MLjV4fMjn6PPV20-X16v1h3fvLy_WKy-JnFfCODfIEDSoHo0njilwAoJwlCvHHWguHJMQnAEFo_aG3DBuBi1D92X4OXq11_3qkt3UmF3d2uKivb5Y212NCG0GpobvtLMv9uymlm8LtNnm2Dykbhu6UzsIzrVQmnfy-T9JNRAmudH_BZmWnBm6A5_9Ad6WpU59NJYxNkhF2Q56uYd8La1VGH87osTutm9_bb-jTw96y02GcAQP6z4OpvWn6QvU44d_if0E4bW5nA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222756128</pqid></control><display><type>article</type><title>Periodically ordered nanoscale islands and mesoporous films composed of nanocrystalline multimetallic oxides</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature</source><creator>Grosso, David ; Boissière, Cédric ; Smarsly, Bernd ; Brezesinski, Torsten ; Pinna, Nicola ; Albouy, Pierre A. ; Amenitsch, Heinz ; Antonietti, Markus ; Sanchez, Clément</creator><creatorcontrib>Grosso, David ; Boissière, Cédric ; Smarsly, Bernd ; Brezesinski, Torsten ; Pinna, Nicola ; Albouy, Pierre A. ; Amenitsch, Heinz ; Antonietti, Markus ; Sanchez, Clément</creatorcontrib><description>Innovative strategies to produce well-defined nanoparticles and other nanostructures such as nanofibres, quantum wells and mesoporous materials have revitalized materials science
1
,
2
for the potential benefit to society. Here, we report a controlled process, involving soft-chemistry-based deposition, template-assisted mesostructured growth, and tuned annealing conditions that allows the preparation of ordered mesoporous crystalline networks and mesostructured nano-island single layers, composed of multicationic metal oxides having perovskite, tetragonal or ilmenite structures. This strategy to obtain meso-organized multi-metal-oxide nanocrystalline films (M
3
NF) bridges the gap between conventional mesoporous materials and the remarkable properties of crystalline ternary or quaternary metallic oxides. Nanocrystalline mesoporous films with controlled wall thickness (10–20 nm) of dielectric SrTiO
3
, photoactive MgTa
2
O
6
or ferromagnetic semi-conducting Co
x
Ti
1−
x
O
2−
x
were prepared by evaporation-induced self-assembly (EISA) using a specially designed non-ionic block-copolymer template. A tuned thermal treatment of the mesoporous films permits the transfer of the wall structure into nanocrystallites, with all tectonic units being tightly incorporated into mechanically stable ordered tri- or bidimensional nanocrystalline networks. This methodology should allow multifunctionalization, miniaturization and integration during development of devices such as smart sensors and actuators, better-performing photocatalysts, and fast electrochromic devices. On the other hand, organized arrays of dispersed ferromagnetic or ferroelectric nanoparticles are promising materials for spintronics and for cheap, non-volatile 'flash' memories.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat1206</identifier><identifier>PMID: 15502838</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Biomaterials ; Chemistry and Materials Science ; Condensed Matter Physics ; Crystallization ; Evaporation ; letter ; Materials Science ; Metals ; Microscopy, Electron ; Nanoparticles ; Nanotechnology ; Optical and Electronic Materials ; Oxides ; Oxides - chemistry ; Photocatalysis ; Physics ; Sensors ; Surfactants</subject><ispartof>Nature materials, 2004-11, Vol.3 (11), p.787-792</ispartof><rights>Springer Nature Limited 2004</rights><rights>Copyright Nature Publishing Group Nov 2004</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c505t-49aa75dd8e65dd9c0a26ea4ed4a136a3ae834a25eda9e6ef8c90b239785d50293</citedby><cites>FETCH-LOGICAL-c505t-49aa75dd8e65dd9c0a26ea4ed4a136a3ae834a25eda9e6ef8c90b239785d50293</cites><orcidid>0000-0002-5350-2042</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmat1206$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmat1206$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15502838$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04897267$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Grosso, David</creatorcontrib><creatorcontrib>Boissière, Cédric</creatorcontrib><creatorcontrib>Smarsly, Bernd</creatorcontrib><creatorcontrib>Brezesinski, Torsten</creatorcontrib><creatorcontrib>Pinna, Nicola</creatorcontrib><creatorcontrib>Albouy, Pierre A.</creatorcontrib><creatorcontrib>Amenitsch, Heinz</creatorcontrib><creatorcontrib>Antonietti, Markus</creatorcontrib><creatorcontrib>Sanchez, Clément</creatorcontrib><title>Periodically ordered nanoscale islands and mesoporous films composed of nanocrystalline multimetallic oxides</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>Innovative strategies to produce well-defined nanoparticles and other nanostructures such as nanofibres, quantum wells and mesoporous materials have revitalized materials science
1
,
2
for the potential benefit to society. Here, we report a controlled process, involving soft-chemistry-based deposition, template-assisted mesostructured growth, and tuned annealing conditions that allows the preparation of ordered mesoporous crystalline networks and mesostructured nano-island single layers, composed of multicationic metal oxides having perovskite, tetragonal or ilmenite structures. This strategy to obtain meso-organized multi-metal-oxide nanocrystalline films (M
3
NF) bridges the gap between conventional mesoporous materials and the remarkable properties of crystalline ternary or quaternary metallic oxides. Nanocrystalline mesoporous films with controlled wall thickness (10–20 nm) of dielectric SrTiO
3
, photoactive MgTa
2
O
6
or ferromagnetic semi-conducting Co
x
Ti
1−
x
O
2−
x
were prepared by evaporation-induced self-assembly (EISA) using a specially designed non-ionic block-copolymer template. A tuned thermal treatment of the mesoporous films permits the transfer of the wall structure into nanocrystallites, with all tectonic units being tightly incorporated into mechanically stable ordered tri- or bidimensional nanocrystalline networks. This methodology should allow multifunctionalization, miniaturization and integration during development of devices such as smart sensors and actuators, better-performing photocatalysts, and fast electrochromic devices. On the other hand, organized arrays of dispersed ferromagnetic or ferroelectric nanoparticles are promising materials for spintronics and for cheap, non-volatile 'flash' memories.</description><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Crystallization</subject><subject>Evaporation</subject><subject>letter</subject><subject>Materials Science</subject><subject>Metals</subject><subject>Microscopy, Electron</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Oxides</subject><subject>Oxides - chemistry</subject><subject>Photocatalysis</subject><subject>Physics</subject><subject>Sensors</subject><subject>Surfactants</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkcuKVDEQhoMozkXBJ5DgwsuiNfeTLIfBcYQGXeg6ZJI6miE5aZNzxH5709OtDQq6qUoqX_3hr0LoCSWvKeH6zZTdTBlR99ApFYNaCaXI_cOZUsZO0Flrt4QwKqV6iE56IkxzfYrSR6ixhOhdSltcaoAKAU9uKq2XAMeW3BQa7gFnaGVTalkaHmPKDfuSN6V1vox3Lb5u29yF4gQ4L2mOGe6uHpcfMUB7hB6MLjV4fMjn6PPV20-X16v1h3fvLy_WKy-JnFfCODfIEDSoHo0njilwAoJwlCvHHWguHJMQnAEFo_aG3DBuBi1D92X4OXq11_3qkt3UmF3d2uKivb5Y212NCG0GpobvtLMv9uymlm8LtNnm2Dykbhu6UzsIzrVQmnfy-T9JNRAmudH_BZmWnBm6A5_9Ad6WpU59NJYxNkhF2Q56uYd8La1VGH87osTutm9_bb-jTw96y02GcAQP6z4OpvWn6QvU44d_if0E4bW5nA</recordid><startdate>20041101</startdate><enddate>20041101</enddate><creator>Grosso, David</creator><creator>Boissière, Cédric</creator><creator>Smarsly, Bernd</creator><creator>Brezesinski, Torsten</creator><creator>Pinna, Nicola</creator><creator>Albouy, Pierre A.</creator><creator>Amenitsch, Heinz</creator><creator>Antonietti, Markus</creator><creator>Sanchez, Clément</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7SP</scope><scope>7U5</scope><scope>L7M</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5350-2042</orcidid></search><sort><creationdate>20041101</creationdate><title>Periodically ordered nanoscale islands and mesoporous films composed of nanocrystalline multimetallic oxides</title><author>Grosso, David ; Boissière, Cédric ; Smarsly, Bernd ; Brezesinski, Torsten ; Pinna, Nicola ; Albouy, Pierre A. ; Amenitsch, Heinz ; Antonietti, Markus ; Sanchez, Clément</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-49aa75dd8e65dd9c0a26ea4ed4a136a3ae834a25eda9e6ef8c90b239785d50293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Crystallization</topic><topic>Evaporation</topic><topic>letter</topic><topic>Materials Science</topic><topic>Metals</topic><topic>Microscopy, Electron</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Oxides</topic><topic>Oxides - chemistry</topic><topic>Photocatalysis</topic><topic>Physics</topic><topic>Sensors</topic><topic>Surfactants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grosso, David</creatorcontrib><creatorcontrib>Boissière, Cédric</creatorcontrib><creatorcontrib>Smarsly, Bernd</creatorcontrib><creatorcontrib>Brezesinski, Torsten</creatorcontrib><creatorcontrib>Pinna, Nicola</creatorcontrib><creatorcontrib>Albouy, Pierre A.</creatorcontrib><creatorcontrib>Amenitsch, Heinz</creatorcontrib><creatorcontrib>Antonietti, Markus</creatorcontrib><creatorcontrib>Sanchez, Clément</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grosso, David</au><au>Boissière, Cédric</au><au>Smarsly, Bernd</au><au>Brezesinski, Torsten</au><au>Pinna, Nicola</au><au>Albouy, Pierre A.</au><au>Amenitsch, Heinz</au><au>Antonietti, Markus</au><au>Sanchez, Clément</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Periodically ordered nanoscale islands and mesoporous films composed of nanocrystalline multimetallic oxides</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2004-11-01</date><risdate>2004</risdate><volume>3</volume><issue>11</issue><spage>787</spage><epage>792</epage><pages>787-792</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Innovative strategies to produce well-defined nanoparticles and other nanostructures such as nanofibres, quantum wells and mesoporous materials have revitalized materials science
1
,
2
for the potential benefit to society. Here, we report a controlled process, involving soft-chemistry-based deposition, template-assisted mesostructured growth, and tuned annealing conditions that allows the preparation of ordered mesoporous crystalline networks and mesostructured nano-island single layers, composed of multicationic metal oxides having perovskite, tetragonal or ilmenite structures. This strategy to obtain meso-organized multi-metal-oxide nanocrystalline films (M
3
NF) bridges the gap between conventional mesoporous materials and the remarkable properties of crystalline ternary or quaternary metallic oxides. Nanocrystalline mesoporous films with controlled wall thickness (10–20 nm) of dielectric SrTiO
3
, photoactive MgTa
2
O
6
or ferromagnetic semi-conducting Co
x
Ti
1−
x
O
2−
x
were prepared by evaporation-induced self-assembly (EISA) using a specially designed non-ionic block-copolymer template. A tuned thermal treatment of the mesoporous films permits the transfer of the wall structure into nanocrystallites, with all tectonic units being tightly incorporated into mechanically stable ordered tri- or bidimensional nanocrystalline networks. This methodology should allow multifunctionalization, miniaturization and integration during development of devices such as smart sensors and actuators, better-performing photocatalysts, and fast electrochromic devices. On the other hand, organized arrays of dispersed ferromagnetic or ferroelectric nanoparticles are promising materials for spintronics and for cheap, non-volatile 'flash' memories.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>15502838</pmid><doi>10.1038/nmat1206</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-5350-2042</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2004-11, Vol.3 (11), p.787-792 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_proquest_miscellaneous_743384683 |
source | MEDLINE; SpringerLink Journals; Nature |
subjects | Biomaterials Chemistry and Materials Science Condensed Matter Physics Crystallization Evaporation letter Materials Science Metals Microscopy, Electron Nanoparticles Nanotechnology Optical and Electronic Materials Oxides Oxides - chemistry Photocatalysis Physics Sensors Surfactants |
title | Periodically ordered nanoscale islands and mesoporous films composed of nanocrystalline multimetallic oxides |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A26%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Periodically%20ordered%20nanoscale%20islands%20and%20mesoporous%20films%20composed%20of%20nanocrystalline%20multimetallic%20oxides&rft.jtitle=Nature%20materials&rft.au=Grosso,%20David&rft.date=2004-11-01&rft.volume=3&rft.issue=11&rft.spage=787&rft.epage=792&rft.pages=787-792&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat1206&rft_dat=%3Cproquest_hal_p%3E67025398%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222756128&rft_id=info:pmid/15502838&rfr_iscdi=true |